A Riemann-Roch formula for singular symplectic reductions

Louis IOOS
joint work with B. Delarue and P. Ramacher

In honour of Michèle Vergne
05/09/2023

Plan
（1）Quantization commutes with Reduction
(1) Quantization commutes with Reduction
(2) Description of the Main result
(1) Quantization commutes with Reduction
(2) Description of the Main result
(3) Elements of proof

Quantization commutes with Reduction

（1）Quantization commutes with Reduction
（2）Description of the Main result
（3）Elements of proof

Quantization commutes with Reduction

－(M, ω) compact symplectic manifold， $\operatorname{dim} M=2 n$ ．

Quantization commutes with Reduction

- (M, ω) compact symplectic manifold, $\operatorname{dim} M=2 n$.
- $\left(L, h^{L}\right)$ Hermitian line bundle over M with Hermitian connection ∇^{L} satisfying the prequantization condition

$$
\omega=\frac{i}{2 \pi} R^{L}
$$

where $R^{L} \in \Omega^{2}(M, \mathbb{C})$ curvature of ∇^{L}.

Quantization commutes with Reduction

- (M, ω) compact symplectic manifold, $\operatorname{dim} M=2 n$.
- $\left(L, h^{L}\right)$ Hermitian line bundle over M with Hermitian connection ∇^{L} satisfying the prequantization condition

$$
\omega=\frac{i}{2 \pi} R^{L}
$$

where $R^{L} \in \Omega^{2}(M, \mathbb{C})$ curvature of ∇^{L}.

- G compact Lie group acting on $\left(L, h^{L}, \nabla^{L}\right)$ over $(M, \omega), \mathfrak{g}:=\operatorname{Lie}(G)$.

Quantization commutes with Reduction

- (M, ω) compact symplectic manifold, $\operatorname{dim} M=2 n$.
- $\left(L, h^{L}\right)$ Hermitian line bundle over M with Hermitian connection ∇^{L} satisfying the prequantization condition

$$
\omega=\frac{i}{2 \pi} R^{L}
$$

where $R^{L} \in \Omega^{2}(M, \mathbb{C})$ curvature of ∇^{L}.

- G compact Lie group acting on $\left(L, h^{L}, \nabla^{L}\right) \operatorname{over}(M, \omega), \mathfrak{g}:=\operatorname{Lie}(G)$.
- Then the action of G on (M, ω) is Hamiltonian : there is a G-equivariant $\mu: M \rightarrow \mathfrak{g}^{*}$, called moment map, satisfying

$$
d\langle\mu, X\rangle=\iota_{\tilde{X}} \omega
$$

for all $X \in \mathfrak{g}$ inducing $\widetilde{X} \in \mathcal{C}^{\infty}(M, T M)$.

Quantization commutes with Reduction

- (M, ω) compact symplectic manifold, $\operatorname{dim} M=2 n$.
- $\left(L, h^{L}\right)$ Hermitian line bundle over M with Hermitian connection ∇^{L} satisfying the prequantization condition

$$
\omega=\frac{i}{2 \pi} R^{L}
$$

where $R^{L} \in \Omega^{2}(M, \mathbb{C})$ curvature of ∇^{L}.

- G compact Lie group acting on $\left(L, h^{L}, \nabla^{L}\right) \operatorname{over}(M, \omega), \mathfrak{g}:=\operatorname{Lie}(G)$.
- Then the action of G on (M, ω) is Hamiltonian : there is a G-equivariant $\mu: M \rightarrow \mathfrak{g}^{*}$, called moment map, satisfying

$$
d\langle\mu, X\rangle=\iota_{\tilde{x}} \omega
$$

for all $X \in \mathfrak{g}$ inducing $\widetilde{X} \in \mathcal{C}^{\infty}(M, T M)$.

- $\mu: M \rightarrow \mathfrak{g}^{*}$ is defined by the Kostant formula

$$
\langle\mu, X\rangle:=\frac{i}{2 \pi}\left(\nabla_{\tilde{X}}-L_{X}\right)
$$

Quantization commutes with Reduction

- Assume (M, ω) admits a G-invariant compatible complex structure.

Quantization commutes with Reduction

- Assume (M, ω) admits a G-invariant compatible complex structure.
- Then G acts holomorphically on (M, ω) compact Kähler manifold.

Quantization commutes with Reduction

- Assume (M, ω) admits a G-invariant compatible complex structure.
- Then G acts holomorphically on (M, ω) compact Kähler manifold.
- $\left(L, h^{L}\right)$ admits a unique holomorphic structure for which ∇^{L} is the Chern connection, and G acts holomorphically on L over M.

Quantization commutes with Reduction

－Assume (M, ω) admits a G－invariant compatible complex structure．
－Then G acts holomorphically on (M, ω) compact Kähler manifold．
－$\left(L, h^{L}\right)$ admits a unique holomorphic structure for which ∇^{L} is the Chern connection，and G acts holomorphically on L over M ．

Quantization commutes with Reduction

- Assume (M, ω) admits a G-invariant compatible complex structure.
- Then G acts holomorphically on (M, ω) compact Kähler manifold.
- $\left(L, h^{L}\right)$ admits a unique holomorphic structure for which ∇^{L} is the Chern connection, and G acts holomorphically on L over M.

Classical mechanics
Quantum mechanics
classical phase space :
(M, ω) symplectic manifold

Quantization commutes with Reduction

- Assume (M, ω) admits a G-invariant compatible complex structure.
- Then G acts holomorphically on (M, ω) compact Kähler manifold.
- $\left(L, h^{L}\right)$ admits a unique holomorphic structure for which ∇^{L} is the Chern connection, and G acts holomorphically on L over M.

Classical mechanics	Quantum mechanics
classical phase space :	space of quantum states :
(M, ω) symplectic manifold	$H^{0}(M, L)$ holomorphic sections of L

Quantization commutes with Reduction

- Assume (M, ω) admits a G-invariant compatible complex structure.
- Then G acts holomorphically on (M, ω) compact Kähler manifold.
- $\left(L, h^{L}\right)$ admits a unique holomorphic structure for which ∇^{L} is the Chern connection, and G acts holomorphically on L over M.

Classical mechanics	Quantum mechanics
classical phase space:	space of quantum states:
(M, ω) symplectic manifold	$H^{0}(M, L)$ holomorphic sections of L
classical symmetries:	
Hamiltonian action of G on (M, ω)	

Quantization commutes with Reduction

- Assume (M, ω) admits a G-invariant compatible complex structure.
- Then G acts holomorphically on (M, ω) compact Kähler manifold.
- $\left(L, h^{L}\right)$ admits a unique holomorphic structure for which ∇^{L} is the Chern connection, and G acts holomorphically on L over M.

Classical mechanics	Quantum mechanics
classical phase space:	space of quantum states:
(M, ω) symplectic manifold	$H^{0}(M, L)$ holomorphic sections of L
classical symmetries:	quantum symmetries:
Hamiltonian action of G on (M, ω)	Unitary action of G on $H^{0}(X, L)$

Quantization commutes with Reduction

- Assume (M, ω) admits a G-invariant compatible complex structure.
- Then G acts holomorphically on (M, ω) compact Kähler manifold.
- $\left(L, h^{L}\right)$ admits a unique holomorphic structure for which ∇^{L} is the Chern connection, and G acts holomorphically on L over M.

Classical mechanics	Quantum mechanics
classical phase space :	space of quantum states:
(M, ω) symplectic manifold	$H^{0}(M, L)$ holomorphic sections of L
classical symmetries:	quantum symmetries:
Hamiltonian action of G on (M, ω)	Unitary action of G on $H^{0}(X, L)$
classical reduction:	
$M_{0}:=\mu^{-1}(0) / G$	

Quantization commutes with Reduction

- Assume (M, ω) admits a G-invariant compatible complex structure.
- Then G acts holomorphically on (M, ω) compact Kähler manifold.
- $\left(L, h^{L}\right)$ admits a unique holomorphic structure for which ∇^{L} is the Chern connection, and G acts holomorphically on L over M.

Classical mechanics	Quantum mechanics
classical phase space:	space of quantum states:
(M, ω) symplectic manifold	$H^{0}(M, L)$ holomorphic sections of L
classical symmetries:	quantum symmetries:
Hamiltonian action of G on (M, ω)	Unitary action of G on $H^{0}(X, L)$
classical reduction:	quantum reduction:
$M_{0}:=\mu^{-1}(0) / G$	$H^{0}(M, L)^{G} G$-invariant hol. sections

Quantization commutes with Reduction

- Assume 0 regular value of $\mu: M \rightarrow \mathfrak{g}^{*}$ and G acts freely on $\mu^{-1}(0)$.

Quantization commutes with Reduction

－Assume 0 regular value of $\mu: M \rightarrow \mathfrak{g}^{*}$ and G acts freely on $\mu^{-1}(0)$ ．

Definition（Marsden－Weinstein）

The symplectic reduction is the smooth manifold $M_{0}:=\mu^{-1}(0) / G$ endowed with the unique symplectic form ω_{0} satisfying

$$
\pi_{0}^{*} \omega_{0}=\left.\omega\right|_{\mu^{-1}(0)}
$$

where $\pi_{0}: \mu^{-1}(0) \rightarrow M_{0}$ quotient map．

Quantization commutes with Reduction

- Assume 0 regular value of $\mu: M \rightarrow \mathfrak{g}^{*}$ and G acts freely on $\mu^{-1}(0)$.

Definition (Marsden-Weinstein)

The symplectic reduction is the smooth manifold $M_{0}:=\mu^{-1}(0) / G$ endowed with the unique symplectic form ω_{0} satisfying

$$
\pi_{0}^{*} \omega_{0}=\left.\omega\right|_{\mu^{-1}(0)}
$$

where $\pi_{0}: \mu^{-1}(0) \rightarrow M_{0}$ quotient map.

- $\left(M_{0}, \omega_{0}\right)$ is prequantized by the line bundle L_{0} caracterized by

$$
\mathcal{C}^{\infty}\left(M_{0}, L_{0}\right) \simeq \mathcal{C}^{\infty}\left(\mu^{-1}(0),\left.L\right|_{\mu^{-1}(0)}\right)^{G}
$$

with induced Hermitian metric and connection.

Quantization commutes with Reduction

- Assume 0 regular value of $\mu: M \rightarrow \mathfrak{g}^{*}$ and G acts freely on $\mu^{-1}(0)$.

Definition (Marsden-Weinstein)

The symplectic reduction is the smooth manifold $M_{0}:=\mu^{-1}(0) / G$ endowed with the unique symplectic form ω_{0} satisfying

$$
\pi_{0}^{*} \omega_{0}=\left.\omega\right|_{\mu^{-1}(0)}
$$

where $\pi_{0}: \mu^{-1}(0) \rightarrow M_{0}$ quotient map.

- $\left(M_{0}, \omega_{0}\right)$ is prequantized by the line bundle L_{0} caracterized by

$$
\mathcal{C}^{\infty}\left(M_{0}, L_{0}\right) \simeq \mathcal{C}^{\infty}\left(\mu^{-1}(0),\left.L\right|_{\mu^{-1}(0)}\right)^{G}
$$

with induced Hermitian metric and connection.

- If (M, ω) admits a G-invariant compatible complex structure, then L_{0} holomorphic line bundle over $\left(M_{0}, \omega_{0}\right)$ Kähler.

Quantization commutes with Reduction

Theorem ([Q,R]=0, Guillemin-Sternberg, '82)

Let G be a compact Lie group acting holomorphically on a holomorphic Hermitian line bundle (L, h^{L}) prequantizing a compact Kähler manifold (M, ω), and assume that G acts freely on $\mu^{-1}(0)$. Then the natural map

$$
\begin{aligned}
H^{0}(M, L)^{G} & \longrightarrow H^{0}\left(M_{0}, L_{0}\right) \\
s & \left.\longmapsto s\right|_{\mu^{-1}(0)},
\end{aligned}
$$

is an isomorphism.

Quantization commutes with Reduction

Theorem ([Q,R]=0, Guillemin-Sternberg, '82)

Let G be a compact Lie group acting holomorphically on a holomorphic Hermitian line bundle (L, h^{L}) prequantizing a compact Kähler manifold (M, ω), and assume that G acts freely on $\mu^{-1}(0)$. Then the natural map

$$
\begin{aligned}
H^{0}(M, L)^{G} & \longrightarrow H^{0}\left(M_{0}, L_{0}\right) \\
s & \left.\longmapsto s\right|_{\mu^{-1}(0)},
\end{aligned}
$$

is an isomorphism.

- Teleman, Braverman, Zhang,'00 : For all $j>0$,

$$
\operatorname{dim} H^{j}(M, L)^{G}=\operatorname{dim} H^{j}\left(M_{0}, L_{0}\right),
$$

where $H^{j}(M, L)$ is the j-th Dolbeault cohomology group of L.

Quantization commutes with Reduction

Theorem ([Q,R]=0, Guillemin-Sternberg, '82)

Let G be a compact Lie group acting holomorphically on a holomorphic Hermitian line bundle (L, h^{L}) prequantizing a compact Kähler manifold (M, ω), and assume that G acts freely on $\mu^{-1}(0)$. Then the natural map

$$
\begin{aligned}
H^{0}(M, L)^{G} & \longrightarrow H^{0}\left(M_{0}, L_{0}\right) \\
s & \left.\longmapsto s\right|_{\mu^{-1}(0)},
\end{aligned}
$$

is an isomorphism.

- Teleman, Braverman, Zhang,'00 : For all $j>0$,

$$
\operatorname{dim} H^{j}(M, L)^{G}=\operatorname{dim} H^{j}\left(M_{0}, L_{0}\right)
$$

where $H^{j}(M, L)$ is the j-th Dolbeault cohomology group of L.

- Setting $R R^{G}(M, L):=\sum_{j=0}^{n}(-1)^{j} \operatorname{dim} H^{j}(M, L)^{G}$, this implies

$$
R R^{G}(M, L)=R R\left(M_{0}, L_{0}\right)
$$

Quantization commutes with Reduction

This last statement extends to the symplectic case ：

$$
R R^{G}(M, L)=\operatorname{dim}\left(\operatorname{Ker} D_{L}^{+}\right)^{G}-\operatorname{dim}\left(\operatorname{Coker} D_{L}^{+}\right)^{G}
$$

where $D_{L}^{+}: \Omega^{0,+}(M, L) \rightarrow \Omega^{0,-}(M, L) \operatorname{spin}^{c}$ Dirac operator induced by a G－invariant almost complex structure $J \in \operatorname{End}(T M)$ compatible with ω ．

Quantization commutes with Reduction

This last statement extends to the symplectic case :

$$
R R^{G}(M, L)=\operatorname{dim}\left(\operatorname{Ker} D_{L}^{+}\right)^{G}-\operatorname{dim}\left(\operatorname{Coker} D_{L}^{+}\right)^{G}
$$

where $D_{L}^{+}: \Omega^{0,+}(M, L) \rightarrow \Omega^{0,-}(M, L) \operatorname{spin}^{c}$ Dirac operator induced by a G-invariant almost complex structure $J \in \operatorname{End}(T M)$ compatible with ω.

Theorem ([Q, R]=0 in the symplectic case)
Assume that 0 is a regular value of μ. Then

$$
R R^{G}(M, L)=R R\left(M_{0}, L_{0}\right)
$$

Quantization commutes with Reduction

This last statement extends to the symplectic case :

$$
R R^{G}(M, L)=\operatorname{dim}\left(\operatorname{Ker} D_{L}^{+}\right)^{G}-\operatorname{dim}\left(\operatorname{Coker} D_{L}^{+}\right)^{G}
$$

where $D_{L}^{+}: \Omega^{0,+}(M, L) \rightarrow \Omega^{0,-}(M, L) \operatorname{spin}^{c}$ Dirac operator induced by a G-invariant almost complex structure $J \in \operatorname{End}(T M)$ compatible with ω.

Theorem ($[\mathrm{Q}, \mathrm{R}]=0$ in the symplectic case)

Assume that 0 is a regular value of μ. Then

$$
R R^{G}(M, L)=R R\left(M_{0}, L_{0}\right)
$$

By the Hirzebruch-Riemann-Roch formula (HRR), this implies

$$
R R^{G}(M, L)=\int_{M_{0}} e^{\omega_{0}} \operatorname{Td}\left(M_{0}\right)
$$

where $\left[\operatorname{Td}\left(M_{0}\right)\right] \in H\left(M_{0}, \mathbb{R}\right)$ symplectic invariant.

Quantization commutes with Reduction

$[\mathrm{Q}, \mathrm{R}]=\mathbf{0}$ in the symplectic case ：a short history
－For G torus ：Vergne，＇96，Meinrenken，＇96．

Quantization commutes with Reduction

$[Q, R]=\mathbf{0}$ in the symplectic case ：a short history
－For G torus ：Vergne，＇96，Meinrenken，＇96．
－For general G ：Meinrenken，＇ 98 ，then Tian－Zhang，＇98．

Quantization commutes with Reduction

$[\mathrm{Q}, \mathrm{R}]=\mathbf{0}$ in the symplectic case ：a short history
－For G torus ：Vergne，＇96，Meinrenken，＇96．
－For general G：Meinrenken，＇98，then Tian－Zhang，＇98．
－For 0 singular value of μ ：Meinrenken－Sjamaar，＇99，then Zhang，＇99， Paradan，＇ 99.

Quantization commutes with Reduction

$[\mathrm{Q}, \mathrm{R}]=\mathbf{0}$ in the symplectic case ：a short history
－For G torus ：Vergne，＇96，Meinrenken，＇96．
－For general G：Meinrenken，＇98，then Tian－Zhang，＇98．
－For 0 singular value of μ ：Meinrenken－Sjamaar，＇99，then Zhang，＇99， Paradan，＇99．
－For $\partial M \neq 0$ ：Tian－Zhang，＇99．

Quantization commutes with Reduction

$[\mathrm{Q}, \mathrm{R}]=\mathbf{0}$ in the symplectic case : a short history

- For G torus : Vergne,'96, Meinrenken,'96.
- For general G: Meinrenken,'98, then Tian-Zhang,'98.
- For 0 singular value of μ : Meinrenken-Sjamaar,' 99 , then Zhang,'99, Paradan,'99.
- For $\partial M \neq 0$: Tian-Zhang,'99.
- For M non-compact and μ proper : Paradan,'03 (for coadjoint orbits), general case conjectured in Vergne's ICM 2006 plenary talk, solved by Ma-Zhang,'14, then Paradan,'11.

Quantization commutes with Reduction

$[\mathrm{Q}, \mathrm{R}]=\mathbf{0}$ in the symplectic case : a short history

- For G torus : Vergne,'96, Meinrenken,' 96.
- For general G: Meinrenken,'98, then Tian-Zhang,'98.
- For 0 singular value of μ : Meinrenken-Sjamaar,'99, then Zhang,'99, Paradan,'99.
- For $\partial M \neq 0$: Tian-Zhang,'99.
- For M non-compact and μ proper : Paradan,'03 (for coadjoint orbits), general case conjectured in Vergne's ICM 2006 plenary talk, solved by Ma-Zhang,'14, then Paradan,'11.
- For CR-manifolds: Hsiao-Ma-Marinescu,'19.

Quantization commutes with Reduction

－For 0 singular value of μ ，the results of Meinrenken－Sjamaar，Zhang and Paradan establish

$$
R R^{G}(M, L)=R R\left(\widetilde{M}_{\varepsilon}, \widetilde{L}_{\varepsilon}\right)
$$

for various desingularizations $\left(\widetilde{M}_{\varepsilon}, \widetilde{\omega}_{\varepsilon}\right)$ of $\left(M_{0}, \omega_{0}\right)$ ，depending on the choice of $\varepsilon>0$ ．

Quantization commutes with Reduction

- For 0 singular value of μ, the results of Meinrenken-Sjamaar, Zhang and Paradan establish

$$
R R^{G}(M, L)=R R\left(\widetilde{M}_{\varepsilon}, \widetilde{L}_{\varepsilon}\right)
$$

for various desingularizations $\left(\widetilde{M}_{\varepsilon}, \widetilde{\omega}_{\varepsilon}\right)$ of $\left(M_{0}, \omega_{0}\right)$, depending on the choice of $\varepsilon>0$.

- In particular, this gives

$$
R R^{G}(M, L)=\int_{\tilde{M}_{\varepsilon}} e^{\tilde{\omega}_{\varepsilon}} \operatorname{Td}\left(\tilde{M}_{\varepsilon}\right)
$$

Quantization commutes with Reduction

- For 0 singular value of μ, the results of Meinrenken-Sjamaar, Zhang and Paradan establish

$$
R R^{G}(M, L)=R R\left(\widetilde{M}_{\varepsilon}, \tilde{L}_{\varepsilon}\right)
$$

for various desingularizations $\left(\widetilde{M}_{\varepsilon}, \widetilde{\omega}_{\varepsilon}\right)$ of $\left(M_{0}, \omega_{0}\right)$, depending on the choice of $\varepsilon>0$.

- In particular, this gives

$$
R R^{G}(M, L)=\int_{\tilde{M}_{\varepsilon}} e^{\tilde{\omega}_{\varepsilon}} \operatorname{Td}\left(\tilde{M}_{\varepsilon}\right)
$$

Question (Sjamaar,'95)

Can the right-hand side be expressed purely in terms of symplectic invariants of M_{0} as a stratified symplectic space?

Quantization commutes with Reduction

Theorem（Delarue－I．－Ramacher，＇23）
Explicit Riemann－Roch type formula for $R R^{G}(M, L)$ when $G=S^{1}$ and 0 singular value of μ ，expressed purely in terms of symplectic invariants of M_{0} as a stratified symplectic space．

Description of the Main result

(1) Quantization commutes with Reduction
(2) Description of the Main result
(3) Elements of proof

Description of the Main result

- M smooth manifold endowed with an action of $G=S^{1}$.

Description of the Main result

－M smooth manifold endowed with an action of $G=S^{1}$ ．
－$S\left(\mathfrak{g}^{*}\right):=\{$ entire analytic series on $\mathfrak{g}:=$ Lie $G\}$ ．

Description of the Main result

- M smooth manifold endowed with an action of $G=S^{1}$.
- $S\left(\mathfrak{g}^{*}\right):=\{$ entire analytic series on $\mathfrak{g}:=$ Lie $G\}$.

Definition (Cartan)

The equivariant cohomology $H_{G}(M, \mathbb{C}):=H\left(\Omega_{G}(M), d_{\mathfrak{g}}\right)$ of G acting on M is the cohomology of

$$
\Omega_{G}(M):=\Omega(M, \mathbb{C})^{G} \otimes S\left(\mathfrak{g}^{*}\right)
$$

endowed with the differential

$$
\left(d_{\mathfrak{g}} \alpha\right)(X):=d \alpha(X)+2 i \pi \iota_{\tilde{X}} \alpha(X)
$$

for all $\alpha \in \Omega_{G}(M)$ and $X \in \mathfrak{g}$ inducing $\widetilde{X} \in \mathcal{C}^{\infty}(M, T M)$.

Description of the Main result

- M smooth manifold endowed with an action of $G=S^{1}$.
- $S\left(\mathfrak{g}^{*}\right):=\{$ entire analytic series on $\mathfrak{g}:=$ Lie $G\}$.

Definition (Cartan)

The equivariant cohomology $H_{G}(M, \mathbb{C}):=H\left(\Omega_{G}(M), d_{\mathfrak{g}}\right)$ of G acting on M is the cohomology of

$$
\Omega_{G}(M):=\Omega(M, \mathbb{C})^{G} \otimes S\left(\mathfrak{g}^{*}\right)
$$

endowed with the differential

$$
\left(d_{\mathfrak{g}} \alpha\right)(X):=d \alpha(X)+2 i \pi \iota_{\tilde{X}} \alpha(X) .
$$

for all $\alpha \in \Omega_{G}(M)$ and $X \in \mathfrak{g}$ inducing $\tilde{X} \in \mathcal{C}^{\infty}(M, T M)$.

Proposition

If G acts freely M, then $H_{G}(M) \simeq H(M / G)$.

Description of the Main result

Consider now the Hamiltonian action of $G=S^{1}$ on (M, ω) ，with moment map $\mu: M \rightarrow \mathfrak{g}^{*}$ ．

Description of the Main result

Consider now the Hamiltonian action of $G=S^{1}$ on (M, ω) ，with moment map $\mu: M \rightarrow \mathfrak{g}^{*}$ ．

Definition

For G acting freely on $\mu^{-1}(0)$ ，the Kirwan map $\kappa: H_{G}(M) \rightarrow H\left(M_{0}, \mathbb{C}\right)$ is given by

$$
\kappa: H_{G}(M) \xrightarrow{\mathrm{inc}^{*}} H_{G}\left(\mu^{-1}(0), \mathbb{C}\right) \simeq H\left(M_{0}, \mathbb{C}\right)
$$

Description of the Main result

Consider now the Hamiltonian action of $G=S^{1}$ on (M, ω), with moment map $\mu: M \rightarrow \mathfrak{g}^{*}$.

Definition

For G acting freely on $\mu^{-1}(0)$, the Kirwan map $\kappa: H_{G}(M) \rightarrow H\left(M_{0}, \mathbb{C}\right)$ is given by

$$
\kappa: H_{G}(M) \xrightarrow{\mathrm{inc}^{*}} H_{G}\left(\mu^{-1}(0), \mathbb{C}\right) \simeq H\left(M_{0}, \mathbb{C}\right) .
$$

Proposition

The Kirwan map is characterized for all $\alpha \in \Omega_{G}(M)$ and $\beta \in \Omega\left(M_{0}, \mathbb{C}\right)$ by

$$
\int_{M_{0}} \beta \wedge \kappa(\alpha)=\int_{\mu^{-1}(0)} \pi_{0}^{*} \beta \wedge \alpha\left(\frac{i}{2 \pi} d \theta\right) \wedge \theta
$$

where $\theta \in \Omega^{1}\left(\mu^{-1}(0), \mathbb{R}\right)$ is a connection over the S^{1}-principal bundle $\pi_{0}: \mu^{-1}(0) \xrightarrow{S^{1}} M_{0}$, so that $\theta(\tilde{X})=x$ for all $X \in \mathfrak{g}$ identified with $x \in \mathbb{R}$.

Description of the Main result

Definition (Berline-Vergne)

E complex vector bundle over M with G-invariant Hermitian connection ∇^{E}, the equivariant curvature is

$$
R_{\mathfrak{g}}^{E}:=R^{E}+2 i \pi \mu^{E} \in \Omega^{\bullet}(M, \operatorname{End}(E))^{G} \otimes S\left(\mathfrak{g}^{*}\right)
$$

where $\mu^{E}(X):=L_{X}-\nabla_{\widetilde{X}}^{E}$ for all $X \in \mathfrak{g}$ inducing $\widetilde{X} \in \mathcal{C}^{\infty}(M, T M)$.

Description of the Main result

Definition (Berline-Vergne)

E complex vector bundle over M with G-invariant Hermitian connection ∇^{E}, the equivariant curvature is

$$
R_{\mathfrak{g}}^{E}:=R^{E}+2 i \pi \mu^{E} \in \Omega^{\bullet}(M, \operatorname{End}(E))^{G} \otimes S\left(\mathfrak{g}^{*}\right),
$$

where $\mu^{E}(X):=L_{X}-\nabla_{\widetilde{X}}^{E}$ for all $X \in \mathfrak{g}$ inducing $\widetilde{X} \in \mathcal{C}^{\infty}(M, T M)$.
Let $E=(T M, J)$ be equipped with the Chern connection $\nabla^{T M}$.

Description of the Main result

Definition (Berline-Vergne)

E complex vector bundle over M with G-invariant Hermitian connection ∇^{E}, the equivariant curvature is

$$
R_{\mathfrak{g}}^{E}:=R^{E}+2 i \pi \mu^{E} \in \Omega^{\bullet}(M, \operatorname{End}(E))^{G} \otimes S\left(\mathfrak{g}^{*}\right)
$$

where $\mu^{E}(X):=L_{X}-\nabla_{\widetilde{X}}^{E}$ for all $X \in \mathfrak{g}$ inducing $\widetilde{X} \in \mathcal{C}^{\infty}(M, T M)$.
Let $E=(T M, J)$ be equipped with the Chern connection $\nabla^{T M}$.

Proposition (Chern-Weil theory, Berline-Vergne)

The equivariant forms $c_{1, \mathfrak{g}}(L):=\omega+2 i \pi \mu \in \Omega_{G}(M)$ and

$$
\mathrm{Td}_{\mathfrak{g}}(M):=\operatorname{det}\left(\frac{R_{\mathfrak{g}}^{T M} / 2 i \pi}{\exp R_{\mathfrak{g}}^{T M} / 2 i \pi-\mathrm{Id}}\right) \in \Omega_{G}(M)
$$

are $d_{\mathfrak{g}}$-closed and their classes in $H_{G}(M)$ are independent of $J \in \operatorname{End}(T M)$.

Description of the Main result

- For all $g \in G$, set $\chi(g):=\operatorname{Tr}\left[\left.g\right|_{\text {Ker } D_{L}^{+}}\right]-\operatorname{Tr}\left[\left.g\right|_{\text {Coker } D_{L}^{+}}\right]$.

Description of the Main result

- For all $g \in G$, set $\chi(g):=\operatorname{Tr}\left[\left.g\right|_{\text {Ker } D_{L}^{+}}\right]-\operatorname{Tr}\left[\left.g\right|_{\text {Coker } D_{L}^{+}}\right]$.
- Then $\operatorname{RR}(M, L)=\chi(e)$, and

$$
R R^{G}(M, L)=\int_{G} \chi(g) d g
$$

Description of the Main result

- For all $g \in G$, set $\chi(g):=\operatorname{Tr}\left[\left.g\right|_{\text {Ker } D_{L}^{+}}\right]-\operatorname{Tr}\left[\left.g\right|_{\text {Coker } D_{L}^{+}}\right]$.
- Then $R R(M, L)=\chi(e)$, and

$$
R R^{G}(M, L)=\int_{G} \chi(g) d g
$$

Theorem (equivariant index formula, Atiyah-Bott-Segal-Singer,' 68)
For all $g \in G$, writing $M^{g}:=\{x \in M \mid g \cdot x=x\}$, we have

$$
\chi(g)=\int_{M^{g}} \operatorname{Tr}\left[g^{-1} \mid L\right] \frac{e^{\omega} \operatorname{Td}\left(M^{g}\right)}{D^{g}\left(M / M^{g}\right)},
$$

where $D^{g}\left(M / M^{g}\right)=\operatorname{det}_{N g}\left(\operatorname{Id}-g \exp \left(R^{N^{g}}\right)\right) \in \Omega^{\bullet}(M, \mathbb{C})$ with $N^{g}:=T M / T M^{g}$ normal bundle of $M^{g} \subset M$.

Description of the Main result

- For all $g \in G$, set $\chi(g):=\operatorname{Tr}\left[\left.g\right|_{\text {Ker } D_{L}^{+}}\right]-\operatorname{Tr}\left[\left.g\right|_{\text {Coker } D_{L}^{+}}\right]$.
- Then $R R(M, L)=\chi(e)$, and

$$
R R^{G}(M, L)=\int_{G} \chi(g) d g
$$

Theorem (equivariant index formula, Atiyah-Bott-Segal-Singer, '68)
For all $g \in G$, writing $M^{g}:=\{x \in M \mid g \cdot x=x\}$, we have

$$
\chi(g)=\int_{M^{g}} \operatorname{Tr}\left[g^{-1} \mid L\right] \frac{e^{\omega} \operatorname{Td}\left(M^{g}\right)}{D^{g}\left(M / M^{g}\right)},
$$

where $D^{g}\left(M / M^{g}\right)=\operatorname{det}_{N g}\left(\operatorname{Id}-g \exp \left(R^{N^{g}}\right)\right) \in \Omega^{\bullet}(M, \mathbb{C})$ with $N^{g}:=T M / T M^{g}$ normal bundle of $M^{g} \subset M$.

- For $g=e^{X}$ with $X \in \mathfrak{g}$, we get $\operatorname{Tr}\left[\left.g^{-1}\right|_{L}\right]=e^{2 i \pi\langle\mu, X\rangle}$.

Description of the Main result

Theorem（Kirillov formula，Berline－Vergne，＇82）
For all $X \in \mathfrak{g}$ small enough，we have

$$
\chi\left(e^{X}\right)=\int_{M} e^{2 i \pi\langle\mu, X\rangle} e^{\omega} \operatorname{Td}_{\mathfrak{g}}(M, X)
$$

Description of the Main result

Theorem (Kirillov formula, Berline-Vergne,'82)
For all $X \in \mathfrak{g}$ small enough, we have

$$
\chi\left(e^{X}\right)=\int_{M} e^{2 i \pi\langle\mu, X\rangle} e^{\omega} \operatorname{Td}_{\mathfrak{g}}(M, X)
$$

Theorem (Meinrenken,' ${ }^{\prime}$)

If $G=S^{1}$ acts freely on $\mu^{-1}(0)$, then

$$
R R^{G}(M, L)=\int_{M_{0}} e^{\omega_{0}} \kappa\left(\operatorname{Td}_{\mathfrak{g}}(M)\right)=R R\left(M_{0}, L_{0}\right)
$$

Description of the Main result

Theorem (Kirillov formula, Berline-Vergne,' 82)

For all $X \in \mathfrak{g}$ small enough, we have

$$
\chi\left(e^{X}\right)=\int_{M} e^{2 i \pi\langle\mu, X\rangle} e^{\omega} \operatorname{Td}_{\mathfrak{g}}(M, X)
$$

Theorem (Meinrenken,'96)

If $G=S^{1}$ acts freely on $\mu^{-1}(0)$, then

$$
R R^{G}(M, L)=\int_{M_{0}} e^{\omega_{0}} \kappa\left(\operatorname{Td}_{\mathfrak{g}}(M)\right)=R R\left(M_{0}, L_{0}\right)
$$

Theorem (Duistermaat-Guillemin-Meinrenken-Wu, '96)
If 0 is a minimum/maximum of the moment map, then

$$
R R^{G}(M, L)=\operatorname{Res}_{z=0 / \infty} \frac{\int_{M_{0}} z^{-1} e^{\omega_{0}} \operatorname{Td}\left(M_{0}\right)}{D^{z}\left(M_{0} / M\right)}=R R\left(M_{0}, L_{0}\right) .
$$

Description of the Main result

- Assume 0 singular value of $\mu: M \rightarrow \mathfrak{g}^{*}$, not extremal.

Description of the Main result

- Assume 0 singular value of $\mu: M \rightarrow \mathfrak{g}^{*}$, not extremal.
- To simplify : $F:=\mu^{-1}(0) \cap M^{G}$ is reduced to one point.

Description of the Main result

- Assume 0 singular value of $\mu: M \rightarrow \mathfrak{g}^{*}$, not extremal.
- To simplify : $F:=\mu^{-1}(0) \cap M^{G}$ is reduced to one point.

Proposition (local normal form, Guillemin-Sternberg,'84)

There exists a chart $U \subset \mathbb{C}^{n}$ around $F \subset M$ such that for all $v \in U$,

$$
\langle\mu(v), X\rangle=x \sum_{k \in \mathbb{Z}} k\left|\pi_{k}(v)\right|^{2}
$$

for all $X \in \mathfrak{g}$ sent to $x \in \mathbb{R}$ via $G \simeq \mathbb{R} / \mathbb{Z}$, and where for any $k \in \mathbb{Z}$,

$$
\pi_{k}: \mathbb{C}^{n} \rightarrow\left\{v \in \mathbb{C}^{n} \mid e^{X} \cdot v=e^{2 i \pi k x} v\right\}
$$

Description of the Main result

- Assume 0 singular value of $\mu: M \rightarrow \mathfrak{g}^{*}$, not extremal.
- To simplify : $F:=\mu^{-1}(0) \cap M^{G}$ is reduced to one point.

Proposition (local normal form, Guillemin-Sternberg, '84)

There exists a chart $U \subset \mathbb{C}^{n}$ around $F \subset M$ such that for all $v \in U$,

$$
\langle\mu(v), X\rangle=x \sum_{k \in \mathbb{Z}} k\left|\pi_{k}(v)\right|^{2}
$$

for all $X \in \mathfrak{g}$ sent to $x \in \mathbb{R}$ via $G \simeq \mathbb{R} / \mathbb{Z}$, and where for any $k \in \mathbb{Z}$,

$$
\pi_{k}: \mathbb{C}^{n} \rightarrow\left\{v \in \mathbb{C}^{n} \mid e^{X} \cdot v=e^{2 i \pi k x} v\right\}
$$

- In particular,

$$
\left.\left(\mu^{-1}(0) \cap U\right) \backslash F \simeq S^{+} \times S^{-} \times\right] 0, \varepsilon[,
$$

where $S^{ \pm}$ellipsoids inside the subspaces of \pmweights inside \mathbb{C}^{n}.

Description of the Main result

Theorem (Delarue-I.-Ramacher,'23)

Assume 0 singular value of μ and G acts on $\mu^{-1}(0) \backslash F$ freely. Then

$$
\begin{aligned}
& R R^{G}(M, L)=\int_{M_{0}} e^{\omega_{0}} \kappa\left(\operatorname{Td}_{\mathfrak{g}}(M)\right)+\int_{\mathrm{Exc}} e^{\pi^{*} \omega} \kappa_{\mathrm{Exc}}\left(\operatorname{Td}_{\mathfrak{g}}(M)\right) \\
&+\operatorname{Res}_{z=0, \infty} \frac{\int_{F} z^{-1} e^{\omega} \operatorname{Td}(F)}{D^{z}(M / F)}
\end{aligned}
$$

Description of the Main result

Theorem (Delarue-I.-Ramacher,'23)

Assume 0 singular value of μ and G acts on $\mu^{-1}(0) \backslash F$ freely. Then

$$
\begin{aligned}
& R R^{G}(M, L)=\int_{M_{0}} e^{\omega_{0}} \kappa\left(\operatorname{Td}_{\mathfrak{g}}(M)\right)+\int_{\mathrm{Exc}} e^{\pi^{*} \omega} \kappa_{\mathrm{Exc}}\left(\operatorname{Td}_{\mathfrak{g}}(M)\right) \\
&+\operatorname{Res}_{z=0, \infty} \frac{\int_{F} z^{-1} e^{\omega} \operatorname{Td}(F)}{D^{z}(M / F)}
\end{aligned}
$$

- $F \subset \mu^{-1}(0)$ fixed point set of G inside $\mu^{-1}(0)$.

Description of the Main result

Theorem（Delarue－I．－Ramacher，＇23）

Assume 0 singular value of μ and G acts on $\mu^{-1}(0) \backslash F$ freely．Then

$$
\begin{aligned}
& R R^{G}(M, L)=\int_{M_{0}} e^{\omega_{0}} \kappa\left(\operatorname{Td}_{\mathfrak{g}}(M)\right)+\int_{\mathrm{Exc}} e^{\pi^{*} \omega} \kappa_{\mathrm{Exc}}\left(\operatorname{Td}_{\mathfrak{g}}(M)\right) \\
&+\operatorname{Res}_{z=0, \infty} \frac{\int_{F} z^{-1} e^{\omega} \operatorname{Td}(F)}{D^{z}(M / F)}
\end{aligned}
$$

－$F \subset \mu^{-1}(0)$ fixed point set of G inside $\mu^{-1}(0)$ ．
－$\kappa: \Omega_{G}(M) \rightarrow \Omega\left(M_{0}, \mathbb{R}\right)$ defined using a connection $\theta \in \Omega^{1}\left(\mu^{-1}(0), \mathbb{R}\right)$ with normal form around the singularities．

Description of the Main result

Theorem (Delarue-I.-Ramacher,'23)

Assume 0 singular value of μ and G acts on $\mu^{-1}(0) \backslash F$ freely. Then

$$
\begin{aligned}
& R R^{G}(M, L)=\int_{M_{0}} e^{\omega_{0}} \kappa\left(\operatorname{Td}_{\mathfrak{g}}(M)\right)+\int_{\mathrm{Exc}} e^{\pi^{*} \omega} \kappa_{\mathrm{Exc}}\left(\operatorname{Td}_{\mathfrak{g}}(M)\right) \\
&+\operatorname{Res}_{z=0, \infty} \frac{\int_{F} z^{-1} e^{\omega} \operatorname{Td}(F)}{D^{z}(M / F)}
\end{aligned}
$$

- $F \subset \mu^{-1}(0)$ fixed point set of G inside $\mu^{-1}(0)$.
- $\kappa: \Omega_{G}(M) \rightarrow \Omega\left(M_{0}, \mathbb{R}\right)$ defined using a connection $\theta \in \Omega^{1}\left(\mu^{-1}(0), \mathbb{R}\right)$ with normal form around the singularities.
- Under a natural condition on the weights of the S^{1}-action around F, $\kappa: H_{G}(M) \rightarrow H\left(\widetilde{M}_{0}, \mathbb{C}\right)$ with $\pi: \widetilde{M}_{0} \rightarrow M_{0}$ partial resolution of the singularities.

Description of the Main result

Theorem (Delarue-I.-Ramacher,'23)

Assume 0 singular value of μ and G acts on $\mu^{-1}(0) \backslash F$ freely. Then

$$
\begin{aligned}
& R R^{G}(M, L)=\int_{M_{0}} e^{\omega_{0}} \kappa\left(\operatorname{Td}_{\mathfrak{g}}(M)\right)+\int_{\mathrm{Exc}} e^{\pi^{*} \omega} \kappa_{\mathrm{Exc}}\left(\operatorname{Td}_{\mathfrak{g}}(M)\right) \\
&+\operatorname{Res}_{z=0, \infty} \frac{\int_{F} z^{-1} e^{\omega} \operatorname{Td}(F)}{D^{z}(M / F)}
\end{aligned}
$$

- $F \subset \mu^{-1}(0)$ fixed point set of G inside $\mu^{-1}(0)$.
- $\kappa: \Omega_{G}(M) \rightarrow \Omega\left(M_{0}, \mathbb{R}\right)$ defined using a connection $\theta \in \Omega^{1}\left(\mu^{-1}(0), \mathbb{R}\right)$ with normal form around the singularities.
- Under a natural condition on the weights of the S^{1}-action around F, $\kappa: H_{G}(M) \rightarrow H\left(\widetilde{M}_{0}, \mathbb{C}\right)$ with $\pi: \widetilde{M}_{0} \rightarrow M_{0}$ partial resolution of the singularities.
- $\operatorname{Res}_{z=0, \infty}$ is the average of the residues at 0 and ∞.

Description of the Main result

Theorem (Delarue-I.-Ramacher,'23)

Assume 0 singular value of μ and no orbifold points. Then

$$
\begin{aligned}
R R^{G}(M, L)=\int_{M_{0}} e^{\omega_{0}} \kappa\left(\operatorname{Td}_{\mathfrak{g}}(M)\right)+\int_{\mathrm{Exc}} e^{\pi^{*} \omega} & \kappa_{\mathrm{Exc}}\left(\operatorname{Td}_{\mathfrak{g}}(M)\right) \\
& +\operatorname{Res}_{z=0, \infty} \frac{\int_{F} z^{-1} e^{\omega \operatorname{Td}(F)}}{D^{z}(M / F)}
\end{aligned}
$$

- The exceptional divisor $\left.\pi\right|_{\text {Exc }}:$ Exc $\rightarrow F$ of the resolution is an $S^{+} / S^{1} \times S^{-} / S^{1}$-principal bundle.

Description of the Main result

Theorem (Delarue-I.-Ramacher,'23)

Assume 0 singular value of μ and no orbifold points. Then

$$
\begin{aligned}
R R^{G}(M, L)=\int_{M_{0}} e^{\omega_{0}} \kappa\left(\operatorname{Td}_{\mathfrak{g}}(M)\right)+\int_{\mathrm{Exc}} e^{\pi^{*} \omega} & \kappa_{\mathrm{Exc}}\left(\operatorname{Td}_{\mathfrak{g}}(M)\right) \\
& +\operatorname{Res}_{z=0, \infty} \frac{\int_{F} z^{-1} e^{\omega \operatorname{Td}(F)}}{D^{z}(M / F)}
\end{aligned}
$$

- The exceptional divisor $\left.\pi\right|_{\text {Exc }}:$ Exc $\rightarrow F$ of the resolution is an $S^{+} / S^{1} \times S^{-} / S^{1}$-principal bundle.
- $\kappa_{\text {Exc }}: H_{G}(M) \rightarrow H(E x c, \mathbb{C})$ is defined for all $\alpha \in \Omega_{G}(M)$ by

$$
\kappa_{\mathrm{Exc}}(\alpha)=\frac{\frac{1}{2}\left(\alpha\left(\frac{i}{2 \pi} d \theta^{+}\right)+\alpha\left(\frac{i}{2 \pi} d \theta^{-}\right)\right)-\alpha\left(\frac{i}{2 \pi} \frac{d \theta^{+}+d \theta^{-}}{2}\right)}{d \theta^{+}-d \theta^{-}}
$$

where $\theta^{ \pm} \in \Omega\left(S^{ \pm}, \mathbb{R}\right)$ connections for the S^{1}-actions on $S^{ \pm}$.

Elements of proof

(1) Quantization commutes with Reduction
(2) Description of the Main result
(3) Elements of proof

Elements of proof

－Follows Witten，＇92 and Meinrenken，＇96．

Elements of proof

－Follows Witten，＇92 and Meinrenken，＇96．
－Introduce a quantum number $m \in \mathbb{N}$ with $m \sim 1 / \hbar$ ，so that $L^{m}:=L^{\otimes m}$ prequantizes $(M, m \omega)$ with moment map $m \mu: M \rightarrow \mathfrak{g}^{*}$ ．

Elements of proof

－Follows Witten，＇92 and Meinrenken，＇96．
－Introduce a quantum number $m \in \mathbb{N}$ with $m \sim 1 / \hbar$ ，so that $L^{m}:=L^{\otimes m}$ prequantizes $(M, m \omega)$ with moment map $m \mu: M \rightarrow \mathfrak{g}^{*}$ ．
－Let $\phi \in \mathcal{C}_{c}^{\infty}\left(S^{1}\right)$ with compact support around $e \in G$ ．

Elements of proof

－Follows Witten，＇92 and Meinrenken，＇96．
－Introduce a quantum number $m \in \mathbb{N}$ with $m \sim 1 / \hbar$ ，so that $L^{m}:=L^{\otimes m}$ prequantizes $(M, m \omega)$ with moment map $m \mu: M \rightarrow \mathfrak{g}^{*}$ ．
－Let $\phi \in \mathcal{C}_{c}^{\infty}\left(S^{1}\right)$ with compact support around $e \in G$ ．
－To simplify ：$G=S^{1}$ acts freely on $M \backslash M^{G}$ ．

Elements of proof

- Follows Witten,'92 and Meinrenken,'96.
- Introduce a quantum number $m \in \mathbb{N}$ with $m \sim 1 / \hbar$, so that $L^{m}:=L^{\otimes m}$ prequantizes $(M, m \omega)$ with moment map $m \mu: M \rightarrow \mathfrak{g}^{*}$.
- Let $\phi \in \mathcal{C}_{c}^{\infty}\left(S^{1}\right)$ with compact support around $e \in G$.
- To simplify : $G=S^{1}$ acts freely on $M \backslash M^{G}$.

$$
\begin{aligned}
& R R^{G}\left(M, L^{m}\right)=\int_{G} \chi^{(m)}(g) d g \\
& =\int_{G} \chi^{(m)}(g) \phi(g) d g+\int_{G} \chi^{(m)}(g)(1-\phi(g)) d g \\
& =\int_{\mathfrak{g}} \int_{M} e^{2 i \pi m\langle\mu, X\rangle} e^{m \omega} \operatorname{Td}_{\mathfrak{g}}(M, X) \phi\left(e^{X}\right) d X \\
& \quad+\int_{G} \int_{M^{G}} \operatorname{Tr}\left[g^{-1} \mid L^{m}\right] \frac{e^{m \omega} \operatorname{Td}\left(M^{G}\right)}{D^{g}\left(M / M^{G}\right)}(1-\phi(g)) d g
\end{aligned}
$$

by the Kirillov and equivariant index formulas.

Elements of proof

－Assume G acts freely on $\mu^{-1}(0)$ ．

Elements of proof

－Assume G acts freely on $\mu^{-1}(0)$ ．
－Non－stationary phase lemma ：for all $\phi \in \mathcal{C}_{c}^{\infty}(\mathbb{R})$ and $\psi \in \mathcal{C}^{\infty}(\mathbb{R})$ satisfying $\psi^{\prime}>0$ ，we have as $m \rightarrow+\infty$ ，

$$
\int_{\mathbb{R}} e^{i m \psi(t)} \phi(t) d t=O\left(m^{-\infty}\right)
$$

Elements of proof

- Assume G acts freely on $\mu^{-1}(0)$.
- Non-stationary phase lemma : for all $\phi \in \mathcal{C}_{c}^{\infty}(\mathbb{R})$ and $\psi \in \mathcal{C}^{\infty}(\mathbb{R})$ satisfying $\psi^{\prime}>0$, we have as $m \rightarrow+\infty$,

$$
\int_{\mathbb{R}} e^{i m \psi(t)} \phi(t) d t=O\left(m^{-\infty}\right)
$$

- For $g=e^{X}$, we have $\operatorname{Tr}\left[\left.g^{-1}\right|_{L^{m}}\right]=e^{2 i \pi\langle\mu, X\rangle}$, so that

$$
\int_{G} \int_{M^{G}} \operatorname{Tr}\left[\left.g^{-1}\right|_{L^{m}}\right] \frac{e^{m \omega} \operatorname{Td}\left(M^{G}\right)}{D^{g}\left(M / M^{G}\right)}(1-\phi(g)) d g=O\left(m^{-\infty}\right)
$$

Elements of proof

- Assume G acts freely on $\mu^{-1}(0)$.
- Non-stationary phase lemma : for all $\phi \in \mathcal{C}_{c}^{\infty}(\mathbb{R})$ and $\psi \in \mathcal{C}^{\infty}(\mathbb{R})$ satisfying $\psi^{\prime}>0$, we have as $m \rightarrow+\infty$,

$$
\int_{\mathbb{R}} e^{i m \psi(t)} \phi(t) d t=O\left(m^{-\infty}\right)
$$

- For $g=e^{X}$, we have $\operatorname{Tr}\left[\left.g^{-1}\right|_{L^{m}}\right]=e^{2 i \pi\langle\mu, X\rangle}$, so that

$$
\int_{G} \int_{M^{G}} \operatorname{Tr}\left[\left.g^{-1}\right|_{L^{m}}\right] \frac{e^{m \omega} \operatorname{Td}\left(M^{G}\right)}{D^{g}\left(M / M^{G}\right)}(1-\phi(g)) d g=O\left(m^{-\infty}\right)
$$

- For any neighborhood $U \subset M$ of $\mu^{-1}(0)$, we have

$$
\begin{aligned}
& \int_{\mathfrak{g}} \int_{M} e^{2 i \pi m\langle\mu, X\rangle} e^{m \omega} \operatorname{Td}_{\mathfrak{g}}(M, X) \phi\left(e^{X}\right) d X \\
& \quad=\int_{\mathfrak{g}} \int_{U} e^{2 i \pi m\langle\mu, X\rangle} e^{m \omega} \operatorname{Td}_{\mathfrak{g}}(M, X) \phi\left(e^{X}\right) d X+O\left(m^{-\infty}\right)
\end{aligned}
$$

Elements of proof

- Duistermaat-Heckman,' 82 : For $U=\mu^{-1}(I)$ with $0 \in I \subset \mathbb{R}$ small enough, there is a connection $\theta \in \Omega^{1}\left(\mu^{-1}(0), \mathbb{R}\right)$ such that, in a trivialization $U \simeq \mu^{-1}(0) \times I$ with $q \in I$, we have

$$
\omega=\left.\omega\right|_{\mu^{-1}(0)}+d(q \theta) .
$$

Elements of proof

- Duistermaat-Heckman,' 82 : For $U=\mu^{-1}(I)$ with $0 \in I \subset \mathbb{R}$ small enough, there is a connection $\theta \in \Omega^{1}\left(\mu^{-1}(0), \mathbb{R}\right)$ such that, in a trivialization $U \simeq \mu^{-1}(0) \times I$ with $q \in I$, we have

$$
\omega=\left.\omega\right|_{\mu^{-1}(0)}+d(q \theta)
$$

- We get as $m \rightarrow+\infty$,

$$
\begin{aligned}
& \int_{\mathfrak{g}} \int_{M} e^{2 i \pi m\langle\mu, X\rangle} e^{m \omega} \operatorname{Td}_{\mathfrak{g}}(M, X) \phi(X) d X \\
& \quad=\int_{\mathbb{R}} \int_{\mathbb{R}} \int_{\mu^{-1}(0)} e^{2 i \pi m x r} e^{m(\omega+d(q \theta))} \operatorname{Td}_{\mathfrak{g}}(M, x) \phi(x) \phi(q) d x d q \\
& +O\left(m^{-\infty}\right)
\end{aligned}
$$

Elements of proof

- stationary phase lemma : for all $\psi, \rho \in \mathcal{C}_{c}^{\infty}(\mathbb{R})$,

$$
m \int_{\mathbb{R}^{2}} e^{2 i \pi m \times q} \psi(q) \rho(x) d x d q=\sum_{k=0}^{+\infty} \frac{i^{k}}{(2 \pi m)^{k} k!} \frac{\partial^{k} \psi}{\partial q^{k}}(0) \frac{\partial^{k} \rho}{\partial x^{k}}(0)
$$

Elements of proof

- stationary phase lemma : for all $\psi, \rho \in \mathcal{C}_{c}^{\infty}(\mathbb{R})$,

$$
m \int_{\mathbb{R}^{2}} e^{2 i \pi m \times q} \psi(q) \rho(x) d x d q=\sum_{k=0}^{+\infty} \frac{i^{k}}{(2 \pi m)^{k} k!} \frac{\partial^{k} \psi}{\partial q^{k}}(0) \frac{\partial^{k} \rho}{\partial x^{k}}(0)
$$

- Taking $\phi \in \mathcal{C}_{c}^{\infty}(\mathbb{R})$ with $\phi \equiv 1$ around 0 , we get as $m \rightarrow+\infty$,

$$
R R^{G}\left(M, L^{m}\right)
$$

$$
=m \int_{\mathbb{R}} \int_{\mathbb{R}} \int_{\mu^{-1}(0)} e^{2 i \pi m \times q} e^{m(\omega+q d \theta)} \operatorname{Td}_{\mathfrak{g}}(M, x) \wedge \theta \phi(x) \phi(q) d x d q
$$

$$
+O\left(m^{-\infty}\right)
$$

$=\int_{\mu^{-1}(0)} e^{m \omega} \operatorname{Td}_{\mathfrak{g}}\left(M, \frac{i}{2 \pi} d \theta\right) \wedge \theta+O\left(m^{-\infty}\right)$
$=\int_{M_{0}} e^{m \omega_{0}} \kappa\left(\operatorname{Td}_{\mathfrak{g}}(M)\right)+O\left(m^{-\infty}\right)$
$=R R\left(M_{0}, L_{0}^{m}\right)+O\left(m^{-\infty}\right)$, since $\kappa\left(\operatorname{Td}_{\mathfrak{g}}(M)\right)=\operatorname{Td}\left(M_{0}\right)$.

Elements of proof

- Recall $R R\left(M_{0}, L_{0}^{m}\right)$ polynomial in $m \in \mathbb{N}$ by HRR.

Elements of proof

- Recall $R R\left(M_{0}, L_{0}^{m}\right)$ polynomial in $m \in \mathbb{N}$ by HRR.

Theorem (Meinrenken,'96)

There exists $k \in \mathbb{N}$ such that for all $0 \leqslant j \leqslant k-1$, the functions $m \mapsto R R\left(M, L^{k m-j}\right)$ are polynomials in $m \in \mathbb{N}$.

Elements of proof

- Recall $R R\left(M_{0}, L_{0}^{m}\right)$ polynomial in $m \in \mathbb{N}$ by HRR.

Theorem (Meinrenken, '96)

There exists $k \in \mathbb{N}$ such that for all $0 \leqslant j \leqslant k-1$, the functions $m \mapsto R R\left(M, L^{k m-j}\right)$ are polynomials in $m \in \mathbb{N}$.

- Uses the equivariant index formula for $\chi^{(m)}$ and a result of Erhart,'77 on the polynomiality of the number of integer points inside polytopes.

Elements of proof

- Recall $R R\left(M_{0}, L_{0}^{m}\right)$ polynomial in $m \in \mathbb{N}$ by HRR.

Theorem (Meinrenken,'96)

There exists $k \in \mathbb{N}$ such that for all $0 \leqslant j \leqslant k-1$, the functions $m \mapsto R R\left(M, L^{k m-j}\right)$ are polynomials in $m \in \mathbb{N}$.

- Uses the equivariant index formula for $\chi^{(m)}$ and a result of Erhart,'77 on the polynomiality of the number of integer points inside polytopes.
- Then $R R^{G}\left(M, L^{m}\right)=R R\left(M_{0}, L_{0}^{m}\right)+O\left(m^{-\infty}\right)$ implies $R R^{G}\left(M, L^{m}\right)=R R\left(M_{0}, L_{0}^{m}\right)$ for all $m \in \mathbb{N}$, and setting $m=1$, we get

$$
R R^{G}(M, L)=R R\left(M_{0}, L_{0}\right)
$$

Elements of proof

- Assume 0 singular value of $\mu: M \rightarrow \mathfrak{g}^{*}$.

Elements of proof

- Assume 0 singular value of $\mu: M \rightarrow \mathfrak{g}^{*}$.
- Then $R R^{G}\left(M, L^{m}\right)$ splits into two terms as before.

Elements of proof

- Assume 0 singular value of $\mu: M \rightarrow \mathfrak{g}^{*}$.
- Then $R R^{G}\left(M, L^{m}\right)$ splits into two terms as before.
- Writing $F:=M^{G} \cap \mu^{-1}(0)$, the term

$$
\begin{aligned}
\int_{G} \int_{M^{G}} & \operatorname{Tr}\left[\left.g^{-1}\right|_{L^{m}}\right] \frac{e^{m \omega} \operatorname{Td}\left(M^{G}\right)}{D^{g}\left(M / M^{G}\right)}(1-\phi(g)) d g \\
& =\int_{G} \int_{F} \operatorname{Tr}\left[g^{-1} \mid L^{m}\right] \frac{e^{m \omega} \operatorname{Td}(F)}{D^{g}(M / F)}(1-\phi(g)) d g+O\left(m^{-\infty}\right)
\end{aligned}
$$

will contribute to the residue term of the Main result.

Elements of proof

- Assume 0 singular value of $\mu: M \rightarrow \mathfrak{g}^{*}$.
- Then $R R^{G}\left(M, L^{m}\right)$ splits into two terms as before.
- Writing $F:=M^{G} \cap \mu^{-1}(0)$, the term

$$
\begin{aligned}
\int_{G} \int_{M^{G}} & \operatorname{Tr}\left[g^{-1} \mid L_{L^{m}}\right] \frac{e^{m \omega} \operatorname{Td}\left(M^{G}\right)}{D^{g}\left(M / M^{G}\right)}(1-\phi(g)) d g \\
& =\int_{G} \int_{F} \operatorname{Tr}\left[g^{-1} \mid L_{L^{m}}\right] \frac{e^{m \omega} \operatorname{Td}(F)}{D^{g}(M / F)}(1-\phi(g)) d g+O\left(m^{-\infty}\right)
\end{aligned}
$$

will contribute to the residue term of the Main result.

- Delarue-I.-Ramacher,'23: Compute the asymptotics as $m \rightarrow+\infty$ of

$$
\begin{aligned}
& \int_{\mathfrak{g}} \int_{M} e^{2 i \pi m\langle\mu, X\rangle} e^{m \omega} \operatorname{Td}_{\mathfrak{g}}(M, X) \phi\left(e^{X}\right) d X \\
& \quad=\int_{\mathfrak{g}} \int_{U} e^{2 i \pi m\langle\mu, X\rangle} e^{m \omega} \operatorname{Td}_{\mathfrak{g}}(M, X) \phi\left(e^{X}\right) d X+O\left(m^{-\infty}\right)
\end{aligned}
$$

using explicit local coordinates for $U \subset M$ around F.

Elements of proof

- To simplify : F reduced to one point. We use the coordinates

$$
\begin{aligned}
\left.\Psi: S^{+} \times S^{-} \times\right] 0, \varepsilon[\times \mathbb{R} & \rightarrow U \subset \mathbb{C}^{n} \\
\left(w^{+}, w^{-}, r, q\right) & \mapsto\left(\sqrt{\sqrt{r^{4}+q^{2}}+q} w^{+}, \sqrt{\sqrt{r^{4}+q^{2}}-q} w^{-}\right)
\end{aligned}
$$

Elements of proof

- To simplify : F reduced to one point. We use the coordinates

$$
\begin{aligned}
\left.\Psi: S^{+} \times S^{-} \times\right] 0, \varepsilon[\times \mathbb{R} & \rightarrow U \subset \mathbb{C}^{n} \\
\left(w^{+}, w^{-}, r, q\right) & \mapsto\left(\sqrt{\sqrt{r^{4}+q^{2}}+q} w^{+}, \sqrt{\sqrt{r^{4}+q^{2}}-q} w^{-}\right)
\end{aligned}
$$

- In these coordinates, the symplectic form becomes

$$
\omega=\left.\omega\right|_{\mu^{-1}(0)}+d\left(q \theta+\left(\sqrt{r^{4}+q^{2}}-r^{2}\right) \bar{\theta}\right)
$$

where $\theta:=\frac{1}{2}\left(\theta^{+}+\theta^{-}\right)$connection and $\bar{\theta}:=\frac{1}{2}\left(\theta^{+}-\theta^{-}\right)$basic.

Elements of proof

- To simplify : F reduced to one point. We use the coordinates

$$
\begin{aligned}
\left.\Psi: S^{+} \times S^{-} \times\right] 0, \varepsilon[\times \mathbb{R} & \rightarrow U \subset \mathbb{C}^{n} \\
\left(w^{+}, w^{-}, r, q\right) & \mapsto\left(\sqrt{\sqrt{r^{4}+q^{2}}+q} w^{+}, \sqrt{\sqrt{r^{4}+q^{2}}-q} w^{-}\right)
\end{aligned}
$$

- In these coordinates, the symplectic form becomes

$$
\omega=\left.\omega\right|_{\mu^{-1}(0)}+d\left(q \theta+\left(\sqrt{r^{4}+q^{2}}-r^{2}\right) \bar{\theta}\right)
$$

where $\theta:=\frac{1}{2}\left(\theta^{+}+\theta^{-}\right)$connection and $\bar{\theta}:=\frac{1}{2}\left(\theta^{+}-\theta^{-}\right)$basic.

- The integral picks up a boundary term on $S^{+} \times S^{-} \times\{0\}$ due to Stokes, leading to the two last terms of the Main result.

Elements of proof

- To simplify : F reduced to one point. We use the coordinates

$$
\begin{aligned}
\left.\Psi: S^{+} \times S^{-} \times\right] 0, \varepsilon[\times \mathbb{R} & \rightarrow U \subset \mathbb{C}^{n} \\
\left(w^{+}, w^{-}, r, q\right) & \mapsto\left(\sqrt{\sqrt{r^{4}+q^{2}}+q} w^{+}, \sqrt{\sqrt{r^{4}+q^{2}}-q} w^{-}\right)
\end{aligned}
$$

- In these coordinates, the symplectic form becomes

$$
\omega=\left.\omega\right|_{\mu^{-1}(0)}+d\left(q \theta+\left(\sqrt{r^{4}+q^{2}}-r^{2}\right) \bar{\theta}\right)
$$

where $\theta:=\frac{1}{2}\left(\theta^{+}+\theta^{-}\right)$connection and $\bar{\theta}:=\frac{1}{2}\left(\theta^{+}-\theta^{-}\right)$basic.

- The integral picks up a boundary term on $S^{+} \times S^{-} \times\{0\}$ due to Stokes, leading to the two last terms of the Main result.
- As $\sqrt{r^{4}+q^{2}}-r^{2} \xrightarrow{r \rightarrow 0}|q|$, the amplitudes of oscillating integrals contain a factor of $|q|$, leading to Cauchy principal values.

Elements of proof

－We get an explicit formula of the form

$$
\begin{aligned}
\int_{\mathfrak{g}} \int_{U} e^{2 i \pi m\langle\mu, X\rangle} e^{m \omega} \operatorname{Td}_{\mathfrak{g}} & (M, X) \phi\left(e^{X}\right) d X \\
& =\langle\delta \text {-term }, \phi\rangle+\langle\text { p.v.-term, } \phi\rangle+O\left(m^{-\infty}\right)
\end{aligned}
$$

and the second term is non－local in ϕ ．

Elements of proof

- We get an explicit formula of the form

$$
\begin{aligned}
\int_{\mathfrak{g}} \int_{U} e^{2 i \pi m\langle\mu, X\rangle} e^{m \omega} \operatorname{Td}_{\mathfrak{g}} & (M, X) \phi\left(e^{X}\right) d X \\
& =\langle\delta \text {-term }, \phi\rangle+\langle\text { p.v.-term, } \phi\rangle+O\left(m^{-\infty}\right)
\end{aligned}
$$

and the second term is non-local in ϕ.

- In particular, if $e \notin \operatorname{Supp} \phi$, then

$$
\begin{aligned}
\int_{G} \int_{F} \operatorname{Tr}\left[\left.g^{-1}\right|_{L^{m}}\right] \frac{e^{m \omega} \operatorname{Td}(F)}{D^{g}(M / F)} \phi(g) d g & =\int_{G} \chi^{(m)}(g) \phi(g) d g+O\left(m^{-\infty}\right) \\
& =\langle\text { p.v.-term, } \phi\rangle+O\left(m^{-\infty}\right)
\end{aligned}
$$

thus identifying the residue term.

Elements of proof

- We get an explicit formula of the form

$$
\begin{aligned}
\int_{\mathfrak{g}} \int_{U} e^{2 i \pi m\langle\mu, X\rangle} e^{m \omega} \operatorname{Td}_{\mathfrak{g}} & (M, X) \phi\left(e^{X}\right) d X \\
& =\langle\delta \text {-term, } \phi\rangle+\langle\text { p.v.-term, } \phi\rangle+O\left(m^{-\infty}\right)
\end{aligned}
$$

and the second term is non-local in ϕ.

- In particular, if $e \notin \operatorname{Supp} \phi$, then

$$
\begin{aligned}
\int_{G} \int_{F} \operatorname{Tr}\left[\left.g^{-1}\right|_{L^{m}}\right] \frac{e^{m \omega} \operatorname{Td}(F)}{D^{g}(M / F)} \phi(g) d g & =\int_{G} \chi^{(m)}(g) \phi(g) d g+O\left(m^{-\infty}\right) \\
& =\langle\text { p.v.-term, } \phi\rangle+O\left(m^{-\infty}\right)
\end{aligned}
$$

thus identifying the residue term.

- To conclude, we use Meinrenken,' 96 on the polynomial behavior of $R R^{G}\left(M, L^{m}\right)$ in $m \in \mathbb{N}$, compared to our polynomial formula \square

The End

Thank you！

