A Riemann-Roch formula for singular symplectic reductions

Louis IOOS joint work with B. Delarue and P. Ramacher

In honour of Michèle Vergne

05/09/2023

Plan

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

② Description of the Main result

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- **2** Description of the Main result
- **O Elements of proof**

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

② Description of the Main result

I Elements of proof

• (M, ω) compact symplectic manifold, dim M = 2n.

- (M, ω) compact symplectic manifold, dim M = 2n.
- (*L*, *h*^{*L*}) Hermitian line bundle over *M* with Hermitian connection ∇^{*L*} satisfying the **prequantization condition**

$$\omega = \frac{i}{2\pi} R^L \,,$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

where $R^{L} \in \Omega^{2}(M, \mathbb{C})$ curvature of ∇^{L} .

- (M, ω) compact symplectic manifold, dim M = 2n.
- (*L*, *h*^{*L*}) Hermitian line bundle over *M* with Hermitian connection ∇^{*L*} satisfying the **prequantization condition**

$$\omega = \frac{i}{2\pi} R^L,$$

where $R^{L} \in \Omega^{2}(M, \mathbb{C})$ curvature of ∇^{L} .

• G compact Lie group acting on (L, h^L, ∇^L) over (M, ω) , $\mathfrak{g} := \text{Lie}(G)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- (M, ω) compact symplectic manifold, dim M = 2n.
- (*L*, *h*^{*L*}) Hermitian line bundle over *M* with Hermitian connection ∇^{*L*} satisfying the **prequantization condition**

$$\omega = \frac{i}{2\pi} R^L,$$

where $R^{L} \in \Omega^{2}(M, \mathbb{C})$ curvature of ∇^{L} .

- G compact Lie group acting on (L, h^L, ∇^L) over (M, ω) , $\mathfrak{g} := \text{Lie}(G)$.
- Then the action of G on (M, ω) is **Hamiltonian** : there is a G-equivariant $\mu : M \to \mathfrak{g}^*$, called **moment map**, satisfying

$$d\langle \mu, X
angle = \iota_{\widetilde{X}} \omega$$
 .

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

for all $X \in \mathfrak{g}$ inducing $\widetilde{X} \in \mathcal{C}^{\infty}(M, TM)$.

- (M, ω) compact symplectic manifold, dim M = 2n.
- (*L*, *h*^{*L*}) Hermitian line bundle over *M* with Hermitian connection ∇^{*L*} satisfying the **prequantization condition**

$$\omega = \frac{i}{2\pi} R^L,$$

where $R^{L} \in \Omega^{2}(M, \mathbb{C})$ curvature of ∇^{L} .

- G compact Lie group acting on (L, h^L, ∇^L) over (M, ω) , $\mathfrak{g} := \text{Lie}(G)$.
- Then the action of G on (M, ω) is **Hamiltonian** : there is a G-equivariant $\mu : M \to \mathfrak{g}^*$, called **moment map**, satisfying

$$d\langle \mu, X
angle = \iota_{\widetilde{X}} \omega$$
 .

for all $X \in \mathfrak{g}$ inducing $\widetilde{X} \in \mathcal{C}^{\infty}(M, TM)$. • $\mu : M \to \mathfrak{g}^*$ is defined by the Kostant formula

$$\langle \mu, X \rangle := \frac{i}{2\pi} (\nabla_{\widetilde{X}} - L_X) \,.$$

• Assume (M, ω) admits a *G*-invariant compatible complex structure.

- Assume (M, ω) admits a *G*-invariant compatible complex structure.
- Then G acts holomorphically on (M, ω) compact Kähler manifold.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- Assume (M, ω) admits a *G*-invariant compatible complex structure.
- Then G acts holomorphically on (M, ω) compact Kähler manifold.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

 (L, h^L) admits a unique holomorphic structure for which ∇^L is the Chern connection, and G acts holomorphically on L over M.

- Assume (M, ω) admits a *G*-invariant compatible complex structure.
- Then G acts holomorphically on (M, ω) compact Kähler manifold.
- (L, h^L) admits a unique holomorphic structure for which ∇^L is the Chern connection, and G acts holomorphically on L over M.

~	•••		
C	assical	mec	hanics
-	abbieai		

Quantum mechanics

(日) (문) (문) (문) (문)

- Assume (M, ω) admits a *G*-invariant compatible complex structure.
- Then G acts holomorphically on (M, ω) compact Kähler manifold.
- (L, h^L) admits a unique holomorphic structure for which ∇^L is the Chern connection, and G acts holomorphically on L over M.

Classical mechanics	Quantum mechanics
classical phase space :	
(M,ω) symplectic manifold	

◆□▶ ◆圖▶ ◆理▶ ◆理▶ ─ 理

- Assume (M, ω) admits a *G*-invariant compatible complex structure.
- Then G acts holomorphically on (M, ω) compact Kähler manifold.
- (L, h^L) admits a unique holomorphic structure for which ∇^L is the Chern connection, and G acts holomorphically on L over M.

Classical mechanics	Quantum mechanics	
classical phase space :	space of quantum states :	
(\pmb{M},ω) symplectic manifold	$H^0(M,L)$ holomorphic sections of L	

- Assume (M, ω) admits a *G*-invariant compatible complex structure.
- Then G acts holomorphically on (M, ω) compact Kähler manifold.
- (L, h^L) admits a unique holomorphic structure for which ∇^L is the Chern connection, and G acts holomorphically on L over M.

Classical mechanics	Quantum mechanics	
classical phase space :	space of quantum states :	
(\textit{M},ω) symplectic manifold	$H^0(M,L)$ holomorphic sections of L	
classical symmetries :		
Hamiltonian action of G on (M, ω)		

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- Assume (M, ω) admits a *G*-invariant compatible complex structure.
- Then G acts holomorphically on (M, ω) compact Kähler manifold.
- (L, h^L) admits a unique holomorphic structure for which ∇^L is the Chern connection, and G acts holomorphically on L over M.

Classical mechanics	Quantum mechanics	
classical phase space :	space of quantum states :	
(\textit{M}, ω) symplectic manifold	$H^0(M,L)$ holomorphic sections of L	
classical symmetries :	quantum symmetries :	
Hamiltonian action of G on (M,ω)	Unitary action of G on $H^0(X, L)$	

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ 三臣……

- Assume (M, ω) admits a *G*-invariant compatible complex structure.
- Then G acts holomorphically on (M, ω) compact Kähler manifold.
- (L, h^L) admits a unique holomorphic structure for which ∇^L is the Chern connection, and G acts holomorphically on L over M.

Classical mechanics	Quantum mechanics	
classical phase space :	space of quantum states :	
(\textit{M},ω) symplectic manifold	$H^0(M,L)$ holomorphic sections of L	
classical symmetries :	quantum symmetries :	
Hamiltonian action of ${\it G}$ on $({\it M},\omega)$	Unitary action of G on $H^0(X, L)$	
classical reduction :		
$M_0 := \mu^{-1}(0)/G$		

- Assume (M, ω) admits a *G*-invariant compatible complex structure.
- Then G acts holomorphically on (M, ω) compact Kähler manifold.
- (L, h^L) admits a unique holomorphic structure for which ∇^L is the Chern connection, and G acts holomorphically on L over M.

Classical mechanics	Quantum mechanics	
classical phase space :	space of quantum states :	
(M,ω) symplectic manifold	$H^0(M,L)$ holomorphic sections of L	
classical symmetries :	quantum symmetries :	
Hamiltonian action of G on (M,ω)	Unitary action of G on $H^0(X, L)$	
classical reduction :	quantum reduction :	
$M_0:=\mu^{-1}(0)/G$	$H^0(M,L)^G$ G-invariant hol. sections	

• Assume 0 regular value of $\mu : M \to \mathfrak{g}^*$ and G acts freely on $\mu^{-1}(0)$.

• Assume 0 regular value of $\mu : M \to \mathfrak{g}^*$ and G acts freely on $\mu^{-1}(0)$.

Definition (Marsden-Weinstein)

The symplectic reduction is the smooth manifold $M_0 := \mu^{-1}(0)/G$ endowed with the unique symplectic form ω_0 satisfying

$$\pi_0^* \omega_0 = \omega|_{\mu^{-1}(0)} \,,$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

where $\pi_0: \mu^{-1}(0) \rightarrow M_0$ quotient map.

• Assume 0 regular value of $\mu : M \to \mathfrak{g}^*$ and G acts freely on $\mu^{-1}(0)$.

Definition (Marsden-Weinstein)

The symplectic reduction is the smooth manifold $M_0 := \mu^{-1}(0)/G$ endowed with the unique symplectic form ω_0 satisfying

$$\pi_0^* \omega_0 = \omega|_{\mu^{-1}(0)} \,,$$

where $\pi_0: \mu^{-1}(0) \rightarrow M_0$ quotient map.

• (M_0, ω_0) is prequantized by the line bundle L_0 caracterized by

$$\mathcal{C}^{\infty}(M_0, L_0) \simeq \mathcal{C}^{\infty}(\mu^{-1}(0), L|_{\mu^{-1}(0)})^G$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

with induced Hermitian metric and connection.

• Assume 0 regular value of $\mu : M \to \mathfrak{g}^*$ and G acts freely on $\mu^{-1}(0)$.

Definition (Marsden-Weinstein)

The symplectic reduction is the smooth manifold $M_0 := \mu^{-1}(0)/G$ endowed with the unique symplectic form ω_0 satisfying

$$\pi_0^* \omega_0 = \omega|_{\mu^{-1}(0)} \,,$$

where $\pi_0: \mu^{-1}(0) \rightarrow M_0$ quotient map.

• (M_0, ω_0) is prequantized by the line bundle L_0 caracterized by

$$\mathcal{C}^{\infty}(M_0, L_0) \simeq \mathcal{C}^{\infty}(\mu^{-1}(0), L|_{\mu^{-1}(0)})^G$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

with induced Hermitian metric and connection.

• If (M, ω) admits a *G*-invariant compatible complex structure, then L_0 holomorphic line bundle over (M_0, ω_0) Kähler.

Theorem ([Q,R]=0, Guillemin-Sternberg,'82)

Let G be a compact Lie group acting holomorphically on a holomorphic Hermitian line bundle (L, h^L) prequantizing a compact Kähler manifold (M, ω) , and assume that G acts freely on $\mu^{-1}(0)$. Then the natural map

$$\begin{aligned} H^0(M,L)^G &\longrightarrow H^0(M_0,L_0) \\ s &\longmapsto s|_{\mu^{-1}(0)} \,, \end{aligned}$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

is an isomorphism.

Theorem ([Q,R]=0, Guillemin-Sternberg,'82)

Let G be a compact Lie group acting holomorphically on a holomorphic Hermitian line bundle (L, h^L) prequantizing a compact Kähler manifold (M, ω) , and assume that G acts freely on $\mu^{-1}(0)$. Then the natural map

$$\begin{aligned} H^0(M,L)^G &\longrightarrow H^0(M_0,L_0) \\ s &\longmapsto s|_{\mu^{-1}(0)} \,, \end{aligned}$$

is an isomorphism.

• Teleman, Braverman, Zhang,'00 : For all j > 0,

$$\dim H^{j}(M,L)^{G} = \dim H^{j}(M_{0},L_{0}),$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

where $H^{j}(M, L)$ is the *j*-th **Dolbeault cohomology group** of *L*.

Theorem ([Q,R]=0, Guillemin-Sternberg,'82)

Let G be a compact Lie group acting holomorphically on a holomorphic Hermitian line bundle (L, h^L) prequantizing a compact Kähler manifold (M, ω) , and assume that G acts freely on $\mu^{-1}(0)$. Then the natural map

$$\begin{aligned} H^0(M,L)^G &\longrightarrow H^0(M_0,L_0) \\ s &\longmapsto s|_{\mu^{-1}(0)} \,, \end{aligned}$$

is an isomorphism.

• Teleman, Braverman, Zhang,'00 : For all j > 0,

$$\dim H^j(M,L)^G = \dim H^j(M_0,L_0)\,,$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

where $H^{j}(M, L)$ is the *j*-th **Dolbeault cohomology group** of *L*. Setting $PP^{G}(M, L) := \sum_{i=1}^{n} (-1)^{i} \dim H^{j}(M, L)^{G}$ this implies

• Setting $RR^G(M, L) := \sum_{j=0}^n (-1)^j \dim H^j(M, L)^G$, this implies $RR^G(M, L) = RR(M_0, L_0)$.

This last statement extends to the symplectic case :

$$RR^{G}(M,L) = \dim(\operatorname{Ker} D_{L}^{+})^{G} - \dim(\operatorname{Coker} D_{L}^{+})^{G}$$

where $D_L^+ : \Omega^{0,+}(M, L) \to \Omega^{0,-}(M, L)$ spin^{*c*} Dirac operator induced by a *G*-invariant almost complex structure $J \in \text{End}(TM)$ compatible with ω .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

This last statement extends to the symplectic case :

$$RR^{G}(M, L) = \dim(\operatorname{Ker} D_{L}^{+})^{G} - \dim(\operatorname{Coker} D_{L}^{+})^{G}$$

where $D_L^+ : \Omega^{0,+}(M, L) \to \Omega^{0,-}(M, L)$ spin^c Dirac operator induced by a *G*-invariant almost complex structure $J \in \text{End}(TM)$ compatible with ω .

Theorem ([Q,R]=0 in the symplectic case)

Assume that 0 is a regular value of μ . Then

$$RR^{G}(M,L) = RR(M_0,L_0).$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

This last statement extends to the symplectic case :

$$RR^{G}(M,L) = \dim(\operatorname{Ker} D_{L}^{+})^{G} - \dim(\operatorname{Coker} D_{L}^{+})^{G}$$

where $D_L^+ : \Omega^{0,+}(M, L) \to \Omega^{0,-}(M, L)$ spin^c Dirac operator induced by a *G*-invariant almost complex structure $J \in \text{End}(TM)$ compatible with ω .

Theorem ([Q,R]=0 in the symplectic case)

Assume that 0 is a regular value of μ . Then

$$RR^{G}(M,L) = RR(M_0,L_0).$$

By the Hirzebruch-Riemann-Roch formula (HRR), this implies

$$RR^{G}(M,L) = \int_{M_0} e^{\omega_0} \operatorname{Td}(M_0),$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

where $[Td(M_0)] \in H(M_0, \mathbb{R})$ symplectic invariant.

[Q,R]=0 in the symplectic case : a short history

• For *G* torus : Vergne, '96, Meinrenken, '96.

[Q,R]=0 in the symplectic case : a short history

- For *G* torus : Vergne, '96, Meinrenken, '96.
- For general G : Meinrenken, '98, then Tian-Zhang, '98.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

[Q,R]=0 in the symplectic case : a short history

- For *G* torus : Vergne, '96, Meinrenken, '96.
- For general G : Meinrenken, '98, then Tian-Zhang, '98.
- For 0 singular value of μ : Meinrenken-Sjamaar,'99, then Zhang,'99, Paradan,'99.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

[Q,R]=0 in the symplectic case : a short history

- For G torus : Vergne, '96, Meinrenken, '96.
- For general G : Meinrenken, '98, then Tian-Zhang, '98.
- For 0 singular value of μ : Meinrenken-Sjamaar,'99, then Zhang,'99, Paradan,'99.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

• For $\partial M \neq 0$: Tian-Zhang,'99.

[Q,R]=0 in the symplectic case : a short history

- For *G* torus : Vergne, '96, Meinrenken, '96.
- For general G : Meinrenken, '98, then Tian-Zhang, '98.
- For 0 singular value of μ : Meinrenken-Sjamaar, '99, then Zhang, '99, Paradan, '99.
- For $\partial M \neq 0$: Tian-Zhang,'99.
- For *M* non-compact and μ proper : Paradan,'03 (for coadjoint orbits), general case conjectured in Vergne's ICM 2006 plenary talk, solved by Ma-Zhang,'14, then Paradan,'11.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

[Q,R]=0 in the symplectic case : a short history

- For G torus : Vergne, '96, Meinrenken, '96.
- For general G : Meinrenken, '98, then Tian-Zhang, '98.
- For 0 singular value of μ : Meinrenken-Sjamaar,'99, then Zhang,'99, Paradan,'99.
- For $\partial M \neq 0$: Tian-Zhang,'99.
- For *M* non-compact and μ proper : Paradan,'03 (for coadjoint orbits), general case conjectured in Vergne's ICM 2006 plenary talk, solved by Ma-Zhang,'14, then Paradan,'11.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

• For CR-manifolds : Hsiao-Ma-Marinescu,'19.

• For 0 singular value of μ , the results of Meinrenken-Sjamaar, Zhang and Paradan establish

$$RR^{G}(M,L) = RR(\widetilde{M}_{\varepsilon},\widetilde{L}_{\varepsilon}),$$

for various desingularizations $(\widetilde{M}_{\varepsilon}, \widetilde{\omega}_{\varepsilon})$ of (M_0, ω_0) , depending on the choice of $\varepsilon > 0$.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

• For 0 singular value of μ , the results of Meinrenken-Sjamaar, Zhang and Paradan establish

$$RR^{G}(M,L) = RR(\widetilde{M}_{\varepsilon},\widetilde{L}_{\varepsilon}),$$

for various desingularizations $(\widetilde{M}_{\varepsilon}, \widetilde{\omega}_{\varepsilon})$ of (M_0, ω_0) , depending on the choice of $\varepsilon > 0$.

• In particular, this gives

$$RR^{G}(M,L) = \int_{\widetilde{M}_{\varepsilon}} e^{\widetilde{\omega}_{\varepsilon}} \operatorname{Td}(\widetilde{M}_{\varepsilon}).$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

• For 0 singular value of μ , the results of Meinrenken-Sjamaar, Zhang and Paradan establish

$$RR^{G}(M,L) = RR(\widetilde{M}_{\varepsilon},\widetilde{L}_{\varepsilon}),$$

for various desingularizations $(\widetilde{M}_{\varepsilon}, \widetilde{\omega}_{\varepsilon})$ of (M_0, ω_0) , depending on the choice of $\varepsilon > 0$.

• In particular, this gives

$$RR^{G}(M,L) = \int_{\widetilde{M}_{\varepsilon}} e^{\widetilde{\omega}_{\varepsilon}} \operatorname{Td}(\widetilde{M}_{\varepsilon}).$$

Question (Sjamaar, '95)

Can the right-hand side be expressed purely in terms of symplectic invariants of M_0 as a stratified symplectic space?

Explicit Riemann-Roch type formula for $RR^G(M, L)$ when $G = S^1$ and 0 singular value of μ , expressed purely in terms of symplectic invariants of M_0 as a stratified symplectic space.

② Description of the Main result

6 Elements of proof

• *M* smooth manifold endowed with an action of $G = S^1$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- *M* smooth manifold endowed with an action of $G = S^1$.
- $S(\mathfrak{g}^*) := \{ \text{entire analytic series on } \mathfrak{g} := \text{Lie } G \}.$

- *M* smooth manifold endowed with an action of $G = S^1$.
- $S(\mathfrak{g}^*) := \{ \text{entire analytic series on } \mathfrak{g} := \text{Lie } G \}.$

Definition (Cartan)

The equivariant cohomology $H_G(M, \mathbb{C}) := H(\Omega_G(M), d_g)$ of G acting on M is the cohomology of

$$\Omega_{\boldsymbol{G}}(\boldsymbol{M}) := \Omega(\boldsymbol{M}, \mathbb{C})^{\boldsymbol{G}} \otimes \boldsymbol{S}(\boldsymbol{\mathfrak{g}}^*) \,,$$

endowed with the differential

$$(d_{\mathfrak{g}}\alpha)(X) := d\alpha(X) + 2i\pi \iota_{\widetilde{X}}\alpha(X).$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

for all $\alpha \in \Omega_{\mathcal{G}}(M)$ and $X \in \mathfrak{g}$ inducing $\widetilde{X} \in \mathcal{C}^{\infty}(M, TM)$.

- *M* smooth manifold endowed with an action of $G = S^1$.
- $S(\mathfrak{g}^*) := \{ \text{entire analytic series on } \mathfrak{g} := \text{Lie } G \}.$

Definition (Cartan)

The equivariant cohomology $H_G(M, \mathbb{C}) := H(\Omega_G(M), d_g)$ of G acting on M is the cohomology of

$$\Omega_{\boldsymbol{G}}(\boldsymbol{M}) := \Omega(\boldsymbol{M}, \mathbb{C})^{\boldsymbol{G}} \otimes \boldsymbol{S}(\boldsymbol{\mathfrak{g}}^*) \,,$$

endowed with the differential

$$(d_{\mathfrak{g}}\alpha)(X) := d\alpha(X) + 2i\pi \iota_{\widetilde{X}}\alpha(X).$$

for all $\alpha \in \Omega_{\mathcal{G}}(M)$ and $X \in \mathfrak{g}$ inducing $\widetilde{X} \in \mathcal{C}^{\infty}(M, TM)$.

Proposition

If G acts freely M, then
$$H_G(M) \simeq H(M/G)$$
.

Consider now the Hamiltonian action of $G = S^1$ on (M, ω) , with moment map $\mu : M \to \mathfrak{g}^*$.

Consider now the Hamiltonian action of $G = S^1$ on (M, ω) , with moment map $\mu : M \to \mathfrak{g}^*$.

Definition

For G acting freely on $\mu^{-1}(0)$, the **Kirwan map** $\kappa : H_G(M) \to H(M_0, \mathbb{C})$ is given by

$$\kappa: H_G(M) \xrightarrow{\operatorname{inc}^*} H_G(\mu^{-1}(0), \mathbb{C}) \simeq H(M_0, \mathbb{C}) \,.$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Consider now the Hamiltonian action of $G = S^1$ on (M, ω) , with moment map $\mu : M \to \mathfrak{g}^*$.

Definition

For G acting freely on $\mu^{-1}(0)$, the **Kirwan map** $\kappa : H_G(M) \to H(M_0, \mathbb{C})$ is given by

$$\kappa: H_G(M) \xrightarrow{\operatorname{inc}^*} H_G(\mu^{-1}(0), \mathbb{C}) \simeq H(M_0, \mathbb{C}).$$

Proposition

The Kirwan map is characterized for all $\alpha \in \Omega_G(M)$ and $\beta \in \Omega(M_0, \mathbb{C})$ by

$$\int_{\mathcal{M}_0} \beta \wedge \kappa(\alpha) = \int_{\mu^{-1}(0)} \pi_0^* \beta \wedge \alpha \left(\frac{i}{2\pi} d\theta\right) \wedge \theta \,,$$

where $\theta \in \Omega^1(\mu^{-1}(0), \mathbb{R})$ is a **connection** over the S^1 -principal bundle $\pi_0 : \mu^{-1}(0) \xrightarrow{S^1} M_0$, so that $\theta(\widetilde{X}) = x$ for all $X \in \mathfrak{g}$ identified with $x \in \mathbb{R}$.

Definition (Berline-Vergne)

E complex vector bundle over *M* with *G*-invariant Hermitian connection ∇^{E} , the **equivariant curvature** is

$$R^{E}_{\mathfrak{g}} := R^{E} + 2i\pi\,\mu^{E} \in \Omega^{\bullet}(M, \operatorname{End}(E))^{G} \otimes S(\mathfrak{g}^{*})\,,$$

where $\mu^{\mathcal{E}}(X) := L_X - \nabla^{\mathcal{E}}_{\widetilde{X}}$ for all $X \in \mathfrak{g}$ inducing $\widetilde{X} \in \mathcal{C}^{\infty}(M, TM)$.

Definition (Berline-Vergne)

E complex vector bundle over *M* with *G*-invariant Hermitian connection ∇^{E} , the **equivariant curvature** is

$$R_{\mathfrak{g}}^{E} := R^{E} + 2i\pi\,\mu^{E} \in \Omega^{\bullet}(M, \operatorname{End}(E))^{G} \otimes S(\mathfrak{g}^{*})\,,$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

where $\mu^{\mathcal{E}}(X) := L_X - \nabla^{\mathcal{E}}_{\widetilde{X}}$ for all $X \in \mathfrak{g}$ inducing $\widetilde{X} \in \mathcal{C}^{\infty}(M, TM)$.

Let E = (TM, J) be equipped with the Chern connection ∇^{TM} .

Definition (Berline-Vergne)

E complex vector bundle over *M* with *G*-invariant Hermitian connection ∇^{E} , the **equivariant curvature** is

$$R_{\mathfrak{g}}^{\mathcal{E}} := R^{\mathcal{E}} + 2i\pi\,\mu^{\mathcal{E}} \in \Omega^{\bullet}(M, \operatorname{End}(\mathcal{E}))^{\mathcal{G}} \otimes S(\mathfrak{g}^*)\,,$$

where $\mu^{E}(X) := L_{X} - \nabla^{E}_{\widetilde{X}}$ for all $X \in \mathfrak{g}$ inducing $\widetilde{X} \in \mathcal{C}^{\infty}(M, TM)$.

Let E = (TM, J) be equipped with the Chern connection ∇^{TM} .

Proposition (Chern-Weil theory, Berline-Vergne)

The equivariant forms $c_{1,\mathfrak{g}}(L):=\omega+2i\pi\,\mu\in\Omega_{\mathcal{G}}(\textit{M})$ and

$$\mathsf{Td}_{\mathfrak{g}}(M) := \mathsf{det}\left(\frac{R_{\mathfrak{g}}^{TM}/2i\pi}{\exp{R_{\mathfrak{g}}^{TM}/2i\pi} - \mathrm{Id}}\right) \in \Omega_{\mathcal{G}}(M)$$

are $d_{\mathfrak{g}}$ -closed and their classes in $H_G(M)$ are independent of $J \in \operatorname{End}(TM)$.

• For all
$$g \in G$$
, set $\chi(g) := \operatorname{Tr}[g|_{\operatorname{Ker} D_{I}^{+}}] - \operatorname{Tr}[g|_{\operatorname{Coker} D_{I}^{+}}].$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• For all $g \in G$, set $\chi(g) := \operatorname{Tr}[g|_{\operatorname{Ker} D_{l}^{+}}] - \operatorname{Tr}[g|_{\operatorname{Coker} D_{l}^{+}}].$

• Then $RR(M, L) = \chi(e)$, and

$$RR^{G}(M,L) = \int_{G} \chi(g) \, dg$$
 .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

• For all $g \in G$, set $\chi(g) := \operatorname{Tr}[g|_{\operatorname{Ker} D_{L}^{+}}] - \operatorname{Tr}[g|_{\operatorname{Coker} D_{L}^{+}}].$

• Then $RR(M, L) = \chi(e)$, and

$$RR^G(M,L) = \int_G \chi(g) \, dg$$
.

Theorem (equivariant index formula, Atiyah-Bott-Segal-Singer,'68)

For all $g \in G$, writing $M^g := \{x \in M \mid g.x = x\}$, we have

$$\chi(g) = \int_{M^g} \mathrm{Tr}[g^{-1}|_L] \frac{e^{\omega} \operatorname{Td}(M^g)}{D^g(M/M^g)} \,,$$

where $D^g(M/M^g) = \det_{N^g}(\mathrm{Id} - g \exp(R^{N^g})) \in \Omega^{\bullet}(M, \mathbb{C})$ with $N^g := TM/TM^g$ normal bundle of $M^g \subset M$.

• For all $g \in G$, set $\chi(g) := \operatorname{Tr}[g|_{\operatorname{Ker} D_{l}^{+}}] - \operatorname{Tr}[g|_{\operatorname{Coker} D_{l}^{+}}].$

• Then $RR(M, L) = \chi(e)$, and

$$RR^G(M,L) = \int_G \chi(g) \, dg$$
.

Theorem (equivariant index formula, Atiyah-Bott-Segal-Singer,'68)

For all $g \in G$, writing $M^g := \{x \in M \mid g.x = x\}$, we have

$$\chi(g) = \int_{M^g} \mathrm{Tr}[g^{-1}|_L] \frac{e^{\omega} \operatorname{Td}(M^g)}{D^g(M/M^g)} \,,$$

where $D^g(M/M^g) = \det_{N^g}(\mathrm{Id} - g \exp(R^{N^g})) \in \Omega^{\bullet}(M, \mathbb{C})$ with $N^g := TM/TM^g$ normal bundle of $M^g \subset M$.

• For
$$g = e^X$$
 with $X \in \mathfrak{g}$, we get $\operatorname{Tr}[g^{-1}|_L] = e^{2i\pi \langle \mu, X \rangle}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Theorem (Kirillov formula, Berline-Vergne, '82)

For all $X \in \mathfrak{g}$ small enough, we have

$$\chi(e^X) = \int_M e^{2i\pi\langle \mu, X\rangle} e^{\omega} \operatorname{Td}_{\mathfrak{g}}(M, X) \,.$$

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ 三臣……

Theorem (Kirillov formula, Berline-Vergne,'82)

For all $X \in \mathfrak{g}$ small enough, we have

$$\chi(e^X) = \int_M e^{2i\pi \langle \mu, X \rangle} e^{\omega} \operatorname{Td}_{\mathfrak{g}}(M, X) \,.$$

Theorem (Meinrenken,'96)

If $G=S^1$ acts freely on $\mu^{-1}(0)$, then

$$RR^{G}(M,L) = \int_{M_0} e^{\omega_0} \kappa(\mathrm{Td}_{\mathfrak{g}}(M)) = RR(M_0,L_0) \, .$$

(日) (四) (문) (문) (문)

Theorem (Kirillov formula, Berline-Vergne, '82)

For all $X \in \mathfrak{g}$ small enough, we have

$$\chi(e^X) = \int_M e^{2i\pi \langle \mu, X \rangle} e^{\omega} \operatorname{Td}_{\mathfrak{g}}(M, X) \,.$$

Theorem (Meinrenken, '96)

If $G=S^1$ acts freely on $\mu^{-1}(0)$, then

$$RR^{G}(M,L) = \int_{M_{0}} e^{\omega_{0}} \kappa(\mathrm{Td}_{\mathfrak{g}}(M)) = RR(M_{0},L_{0}).$$

Theorem (Duistermaat-Guillemin-Meinrenken-Wu, '96)

If 0 is a minimum/maximum of the moment map, then

$$RR^{G}(M,L) = \operatorname{Res}_{z=0/\infty} \frac{\int_{M_0} z^{-1} e^{\omega_0} \operatorname{Td}(M_0)}{D^{z}(M_0/M)} = RR(M_0,L_0).$$

• Assume 0 singular value of $\mu : M \to \mathfrak{g}^*$, not extremal.

- Assume 0 singular value of $\mu : M \to \mathfrak{g}^*$, not extremal.
- To simplify : $F := \mu^{-1}(0) \cap M^G$ is reduced to one point.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- Assume 0 singular value of $\mu : M \to \mathfrak{g}^*$, not extremal.
- To simplify : $F := \mu^{-1}(0) \cap M^G$ is reduced to one point.

Proposition (local normal form, Guillemin-Sternberg,'84)

There exists a chart $U \subset \mathbb{C}^n$ around $F \subset M$ such that for all $v \in U$,

$$\langle \mu(\mathbf{v}), X \rangle = x \sum_{k \in \mathbb{Z}} k |\pi_k(\mathbf{v})|^2$$

for all $X \in \mathfrak{g}$ sent to $x \in \mathbb{R}$ via $G \simeq \mathbb{R}/\mathbb{Z}$, and where for any $k \in \mathbb{Z}$,

$$\pi_k: \mathbb{C}^n \to \{ v \in \mathbb{C}^n \mid e^X \cdot v = e^{2i\pi kx} v \}.$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

- Assume 0 singular value of $\mu : M \to \mathfrak{g}^*$, not extremal.
- To simplify : $F := \mu^{-1}(0) \cap M^G$ is reduced to one point.

Proposition (local normal form, Guillemin-Sternberg,'84)

There exists a chart $U \subset \mathbb{C}^n$ around $F \subset M$ such that for all $v \in U$,

$$\langle \mu(\mathbf{v}), X \rangle = x \sum_{k \in \mathbb{Z}} k |\pi_k(\mathbf{v})|^2$$

for all $X \in \mathfrak{g}$ sent to $x \in \mathbb{R}$ via $G \simeq \mathbb{R}/\mathbb{Z}$, and where for any $k \in \mathbb{Z}$,

$$\pi_k: \mathbb{C}^n \to \{ v \in \mathbb{C}^n \mid e^X \cdot v = e^{2i\pi kx} v \}.$$

In particular,

$$(\mu^{-1}(0) \cap U) \setminus F \simeq S^+ \times S^- \times]0, \varepsilon[,$$

where S^{\pm} ellipsoids inside the subspaces of \pm weights inside \mathbb{C}^n .

Assume 0 singular value of μ and G acts on $\mu^{-1}(0)ackslash F$ freely. Then

$$\begin{split} RR^{G}(M,L) &= \int_{M_{0}} e^{\omega_{0}} \kappa(\mathrm{Td}_{\mathfrak{g}}(M)) + \int_{\mathsf{Exc}} e^{\pi^{*}\omega} \kappa_{\mathsf{Exc}}(\mathrm{Td}_{\mathfrak{g}}(M)) \\ &+ \mathrm{Res}_{z=0,\infty} \frac{\int_{F} z^{-1} e^{\omega} \operatorname{Td}(F)}{D^{z}(M/F)} \,. \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Assume 0 singular value of μ and G acts on $\mu^{-1}(0)ackslash F$ freely. Then

$$RR^{G}(M,L) = \int_{M_{0}} e^{\omega_{0}} \kappa(\mathrm{Td}_{\mathfrak{g}}(M)) + \int_{\mathrm{Exc}} e^{\pi^{*}\omega} \kappa_{\mathrm{Exc}}(\mathrm{Td}_{\mathfrak{g}}(M)) + \operatorname{Res}_{z=0,\infty} \frac{\int_{F} z^{-1} e^{\omega} \operatorname{Td}(F)}{D^{z}(M/F)}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• $F \subset \mu^{-1}(0)$ fixed point set of G inside $\mu^{-1}(0)$.

Assume 0 singular value of μ and G acts on $\mu^{-1}(0)ackslash F$ freely. Then

$$\begin{aligned} RR^{G}(M,L) &= \int_{M_{0}} e^{\omega_{0}} \kappa(\mathrm{Td}_{\mathfrak{g}}(M)) + \int_{\mathrm{Exc}} e^{\pi^{*}\omega} \kappa_{\mathrm{Exc}}(\mathrm{Td}_{\mathfrak{g}}(M)) \\ &+ \mathrm{Res}_{z=0,\infty} \frac{\int_{F} z^{-1} e^{\omega} \operatorname{Td}(F)}{D^{z}(M/F)} \,. \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- $F \subset \mu^{-1}(0)$ fixed point set of G inside $\mu^{-1}(0)$.
- $\kappa : \Omega_G(M) \to \Omega(M_0, \mathbb{R})$ defined using a connection $\theta \in \Omega^1(\mu^{-1}(0), \mathbb{R})$ with normal form around the singularities.

Assume 0 singular value of μ and G acts on $\mu^{-1}(0)ackslash F$ freely. Then

$$RR^{G}(M,L) = \int_{M_{0}} e^{\omega_{0}} \kappa(\mathrm{Td}_{\mathfrak{g}}(M)) + \int_{\mathrm{Exc}} e^{\pi^{*}\omega} \kappa_{\mathrm{Exc}}(\mathrm{Td}_{\mathfrak{g}}(M)) + \operatorname{Res}_{z=0,\infty} \frac{\int_{F} z^{-1} e^{\omega} \operatorname{Td}(F)}{D^{z}(M/F)}.$$

- $F \subset \mu^{-1}(0)$ fixed point set of G inside $\mu^{-1}(0)$.
- $\kappa : \Omega_G(M) \to \Omega(M_0, \mathbb{R})$ defined using a connection $\theta \in \Omega^1(\mu^{-1}(0), \mathbb{R})$ with normal form around the singularities.
- Under a natural condition on the weights of the S^1 -action around F, $\kappa: H_G(M) \to H(\widetilde{M}_0, \mathbb{C})$ with $\pi: \widetilde{M}_0 \to M_0$ partial resolution of the singularities.

Assume 0 singular value of μ and G acts on $\mu^{-1}(0)ackslash F$ freely. Then

$$RR^{G}(M,L) = \int_{M_{0}} e^{\omega_{0}} \kappa(\mathrm{Td}_{\mathfrak{g}}(M)) + \int_{\mathrm{Exc}} e^{\pi^{*}\omega} \kappa_{\mathrm{Exc}}(\mathrm{Td}_{\mathfrak{g}}(M)) + \operatorname{Res}_{z=0,\infty} \frac{\int_{F} z^{-1} e^{\omega} \operatorname{Td}(F)}{D^{z}(M/F)}.$$

- $F \subset \mu^{-1}(0)$ fixed point set of G inside $\mu^{-1}(0)$.
- $\kappa : \Omega_G(M) \to \Omega(M_0, \mathbb{R})$ defined using a connection $\theta \in \Omega^1(\mu^{-1}(0), \mathbb{R})$ with normal form around the singularities.
- Under a natural condition on the weights of the S^1 -action around F, $\kappa: H_G(M) \to H(\widetilde{M}_0, \mathbb{C})$ with $\pi: \widetilde{M}_0 \to M_0$ partial resolution of the singularities.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

• $\operatorname{Res}_{z=0,\infty}$ is the average of the residues at 0 and ∞ .

Assume 0 singular value of $\boldsymbol{\mu}$ and no orbifold points. Then

$$\begin{split} RR^{G}(M,L) &= \int_{M_{0}} e^{\omega_{0}} \kappa(\mathrm{Td}_{\mathfrak{g}}(M)) + \int_{\mathrm{Exc}} e^{\pi^{*}\omega} \kappa_{\mathrm{Exc}}(\mathrm{Td}_{\mathfrak{g}}(M)) \\ &+ \mathrm{Res}_{z=0,\infty} \frac{\int_{F} z^{-1} e^{\omega \operatorname{Td}(F)}}{D^{z}(M/F)} \,. \end{split}$$

• The exceptional divisor $\pi|_{\text{Exc}}$: Exc \rightarrow F of the resolution is an $S^+/S^1 \times S^-/S^1$ -principal bundle.

Assume 0 singular value of $\boldsymbol{\mu}$ and no orbifold points. Then

$$\begin{split} RR^{G}(M,L) &= \int_{M_{0}} e^{\omega_{0}} \kappa(\mathsf{Td}_{\mathfrak{g}}(M)) + \int_{\mathsf{Exc}} e^{\pi^{*}\omega} \kappa_{\mathsf{Exc}}(\mathsf{Td}_{\mathfrak{g}}(M)) \\ &+ \mathsf{Res}_{z=0,\infty} \frac{\int_{F} z^{-1} e^{\omega \,\mathsf{Td}(F)}}{D^{z}(M/F)} \,. \end{split}$$

- The exceptional divisor $\pi|_{\text{Exc}}$: Exc \rightarrow F of the resolution is an $S^+/S^1 \times S^-/S^1$ -principal bundle.
- $\kappa_{\mathsf{Exc}}: H_{\mathcal{G}}(M) \to H(\mathsf{Exc}, \mathbb{C})$ is defined for all $\alpha \in \Omega_{\mathcal{G}}(M)$ by

$$\kappa_{\mathsf{Exc}}(\alpha) = \frac{\frac{1}{2}(\alpha(\frac{i}{2\pi}d\theta^+) + \alpha(\frac{i}{2\pi}d\theta^-)) - \alpha(\frac{i}{2\pi}\frac{d\theta^+ + d\theta^-}{2})}{d\theta^+ - d\theta^-}$$

where $\theta^{\pm} \in \Omega(S^{\pm}, \mathbb{R})$ connections for the S^1 -actions on S^{\pm} .

SQC.

- 2

② Description of the Main result

O Elements of proof

Elements of proof

• Follows Witten,'92 and Meinrenken,'96.

- Follows Witten,'92 and Meinrenken,'96.
- Introduce a **quantum number** $m \in \mathbb{N}$ with $m \sim 1/\hbar$, so that $L^m := L^{\otimes m}$ prequantizes $(M, m\omega)$ with moment map $m\mu : M \to \mathfrak{g}^*$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- Follows Witten,'92 and Meinrenken,'96.
- Introduce a quantum number $m \in \mathbb{N}$ with $m \sim 1/\hbar$, so that $L^m := L^{\otimes m}$ prequantizes $(M, m\omega)$ with moment map $m\mu : M \to \mathfrak{g}^*$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

• Let $\phi \in \mathcal{C}^{\infty}_{c}(S^{1})$ with compact support around $e \in G$.

- Follows Witten,'92 and Meinrenken,'96.
- Introduce a **quantum number** $m \in \mathbb{N}$ with $m \sim 1/\hbar$, so that $L^m := L^{\otimes m}$ prequantizes $(M, m\omega)$ with moment map $m\mu : M \to \mathfrak{g}^*$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- Let $\phi \in \mathcal{C}^{\infty}_{c}(S^{1})$ with compact support around $e \in G$.
- To simplify : $G = S^1$ acts freely on $M \setminus M^G$.

- Follows Witten,'92 and Meinrenken,'96.
- Introduce a **quantum number** $m \in \mathbb{N}$ with $m \sim 1/\hbar$, so that $L^m := L^{\otimes m}$ prequantizes $(M, m\omega)$ with moment map $m\mu : M \to \mathfrak{g}^*$.
- Let $\phi \in \mathcal{C}^{\infty}_{c}(S^{1})$ with compact support around $e \in G$.
- To simplify : $G = S^1$ acts freely on $M \setminus M^G$.

$$RR^{G}(M, L^{m}) = \int_{G} \chi^{(m)}(g) dg$$

= $\int_{G} \chi^{(m)}(g) \phi(g) dg + \int_{G} \chi^{(m)}(g)(1 - \phi(g)) dg$
= $\int_{\mathfrak{g}} \int_{M} e^{2i\pi m \langle \mu, X \rangle} e^{m\omega} \operatorname{Td}_{\mathfrak{g}}(M, X) \phi(e^{X}) dX$
+ $\int_{G} \int_{M^{G}} \operatorname{Tr}[g^{-1}|_{L^{m}}] \frac{e^{m\omega} \operatorname{Td}(M^{G})}{D^{g}(M/M^{G})} (1 - \phi(g)) dg.$

by the Kirillov and equivariant index formulas.

• Assume G acts freely on $\mu^{-1}(0)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Assume G acts freely on $\mu^{-1}(0)$.
- Non-stationary phase lemma : for all $\phi \in \mathcal{C}^{\infty}_{c}(\mathbb{R})$ and $\psi \in \mathcal{C}^{\infty}(\mathbb{R})$ satisfying $\psi' > 0$, we have as $m \to +\infty$,

$$\int_{\mathbb{R}} e^{im\psi(t)} \phi(t) \, dt = O(m^{-\infty}) \, .$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- Assume G acts freely on $\mu^{-1}(0)$.
- Non-stationary phase lemma : for all $\phi \in C^{\infty}_{c}(\mathbb{R})$ and $\psi \in C^{\infty}(\mathbb{R})$ satisfying $\psi' > 0$, we have as $m \to +\infty$,

$$\int_{\mathbb{R}} e^{im\psi(t)} \phi(t) \, dt = O(m^{-\infty}) \, .$$

• For $g=e^X$, we have ${\sf Tr}[g^{-1}|_{L^m}]=e^{2i\pi\langle\mu,X
angle}$, so that

$$\int_G \int_{M^G} \operatorname{Tr}[g^{-1}|_{L^m}] \frac{e^{m\omega} \operatorname{Td}(M^G)}{D^g(M/M^G)} (1-\phi(g)) \, dg = O(m^{-\infty}) \, .$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

- Assume G acts freely on $\mu^{-1}(0)$.
- Non-stationary phase lemma : for all $\phi \in C^{\infty}_{c}(\mathbb{R})$ and $\psi \in C^{\infty}(\mathbb{R})$ satisfying $\psi' > 0$, we have as $m \to +\infty$,

$$\int_{\mathbb{R}} e^{im\psi(t)} \phi(t) \, dt = O(m^{-\infty}) \, .$$

• For $g=e^X$, we have ${\sf Tr}[g^{-1}|_{L^m}]=e^{2i\pi\langle\mu,X
angle}$, so that

$$\int_G \int_{M^G} \mathrm{Tr}[g^{-1}|_{L^m}] \frac{e^{m\omega} \operatorname{Td}(M^G)}{D^g(M/M^G)} (1-\phi(g)) \, dg = O(m^{-\infty}) \, .$$

• For any neighborhood $U \subset M$ of $\mu^{-1}(0)$, we have

$$\begin{split} \int_{\mathfrak{g}} \int_{M} e^{2i\pi m \langle \mu, X \rangle} e^{m\omega} \, \mathrm{Td}_{\mathfrak{g}}(M, X) \phi(e^{X}) \, dX \\ &= \int_{\mathfrak{g}} \int_{U} e^{2i\pi m \langle \mu, X \rangle} e^{m\omega} \, \mathrm{Td}_{\mathfrak{g}}(M, X) \phi(e^{X}) \, dX + O(m^{-\infty}) \, . \end{split}$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

• Duistermaat-Heckman,'82 : For $U = \mu^{-1}(I)$ with $0 \in I \subset \mathbb{R}$ small enough, there is a connection $\theta \in \Omega^1(\mu^{-1}(0), \mathbb{R})$ such that, in a trivialization $U \simeq \mu^{-1}(0) \times I$ with $q \in I$, we have

$$\omega = \omega|_{\mu^{-1}(\mathbf{0})} + d(q\theta).$$

• Duistermaat-Heckman,'82 : For $U = \mu^{-1}(I)$ with $0 \in I \subset \mathbb{R}$ small enough, there is a connection $\theta \in \Omega^1(\mu^{-1}(0), \mathbb{R})$ such that, in a trivialization $U \simeq \mu^{-1}(0) \times I$ with $q \in I$, we have

$$\omega = \omega|_{\mu^{-1}(\mathbf{0})} + d(q\theta).$$

• We get as $m \to +\infty$,

$$\begin{split} &\int_{\mathfrak{g}} \int_{M} e^{2i\pi m \langle \mu, X \rangle} e^{m\omega} \operatorname{Td}_{\mathfrak{g}}(M, X) \phi(X) \, dX \\ &= \int_{\mathbb{R}} \int_{\mathbb{R}} \int_{\mu^{-1}(0)} e^{2i\pi m x r} e^{m(\omega + d(q\theta))} \operatorname{Td}_{\mathfrak{g}}(M, x) \phi(x) \phi(q) \, dx \, dq \\ &\quad + O(m^{-\infty}) \end{split}$$

• stationary phase lemma : for all $\psi, \rho \in \mathcal{C}^{\infty}_{c}(\mathbb{R})$,

$$m \int_{\mathbb{R}^2} e^{2i\pi m \times q} \psi(q) \rho(x) \, dx \, dq = \sum_{k=0}^{+\infty} \frac{i^k}{(2\pi m)^k k!} \frac{\partial^k \psi}{\partial q^k}(0) \frac{\partial^k \rho}{\partial x^k}(0)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

• stationary phase lemma : for all $\psi, \rho \in \mathcal{C}^{\infty}_{c}(\mathbb{R})$,

$$m \int_{\mathbb{R}^2} e^{2i\pi m x q} \psi(q) \rho(x) \, dx \, dq = \sum_{k=0}^{+\infty} \frac{i^k}{(2\pi m)^k k!} \frac{\partial^k \psi}{\partial q^k}(0) \frac{\partial^k \rho}{\partial x^k}(0)$$

• Taking $\phi \in \mathcal{C}_{c}^{\infty}(\mathbb{R})$ with $\phi \equiv 1$ around 0, we get as $m \to +\infty$, $RR^{G}(M, L^{m})$ $= m \int_{\mathbb{R}} \int_{\mathbb{R}} \int_{\mu^{-1}(0)} e^{2i\pi m x q} e^{m(\omega + qd\theta)} \operatorname{Td}_{\mathfrak{g}}(M, x) \wedge \theta \phi(x)\phi(q) \, dx \, dq$ $+ O(m^{-\infty})$ $= \int_{-1} e^{m\omega} \operatorname{Td}_{\mathfrak{g}}(M, \frac{i}{2\pi} d\theta) \wedge \theta + O(m^{-\infty})$

$$\int_{\mu^{-1}(0)} \int_{0}^{\mu^{-1}(0)} e^{m\omega_0} \kappa(\operatorname{Td}_{\mathfrak{g}}(M)) + O(m^{-\infty})$$

= $RR(M_0, L_0^m) + O(m^{-\infty})$, since $\kappa(\operatorname{Td}_{\mathfrak{g}}(M)) = \operatorname{Td}(M_0)$.

• **Recall** $RR(M_0, L_0^m)$ polynomial in $m \in \mathbb{N}$ by HRR.

• **Recall** $RR(M_0, L_0^m)$ polynomial in $m \in \mathbb{N}$ by HRR.

Theorem (Meinrenken,'96)

There exists $k \in \mathbb{N}$ such that for all $0 \leq j \leq k - 1$, the functions $m \mapsto RR(M, L^{km-j})$ are polynomials in $m \in \mathbb{N}$.

• **Recall** $RR(M_0, L_0^m)$ polynomial in $m \in \mathbb{N}$ by HRR.

Theorem (Meinrenken,'96)

There exists $k \in \mathbb{N}$ such that for all $0 \leq j \leq k - 1$, the functions $m \mapsto RR(M, L^{km-j})$ are polynomials in $m \in \mathbb{N}$.

• Uses the equivariant index formula for $\chi^{(m)}$ and a result of Erhart,'77 on the polynomiality of the number of integer points inside polytopes.

• **Recall** $RR(M_0, L_0^m)$ polynomial in $m \in \mathbb{N}$ by HRR.

Theorem (Meinrenken, '96)

There exists $k \in \mathbb{N}$ such that for all $0 \leq j \leq k - 1$, the functions $m \mapsto RR(M, L^{km-j})$ are polynomials in $m \in \mathbb{N}$.

- Uses the equivariant index formula for $\chi^{(m)}$ and a result of Erhart,'77 on the polynomiality of the number of integer points inside polytopes.
- Then $RR^G(M, L^m) = RR(M_0, L_0^m) + O(m^{-\infty})$ implies $RR^G(M, L^m) = RR(M_0, L_0^m)$ for all $m \in \mathbb{N}$, and setting m = 1, we get

$$RR^{G}(M,L) = RR(M_0,L_0).$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

• Assume 0 singular value of $\mu: M \to \mathfrak{g}^*$.

- Assume 0 singular value of $\mu: M \to \mathfrak{g}^*$.
- Then $RR^{G}(M, L^{m})$ splits into two terms as before.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Assume 0 singular value of $\mu: M \to \mathfrak{g}^*$.
- Then $RR^{G}(M, L^{m})$ splits into two terms as before.
- Writing ${\it F}:={\it M}^{\it G}\cap\mu^{-1}(0),$ the term

$$\begin{split} \int_{G} \int_{M^{G}} \mathrm{Tr}[g^{-1}|_{L^{m}}] \frac{e^{m\omega} \operatorname{Td}(M^{G})}{D^{g}(M/M^{G})} (1-\phi(g)) \, dg \\ &= \int_{G} \int_{F} \mathrm{Tr}[g^{-1}|_{L^{m}}] \frac{e^{m\omega} \operatorname{Td}(F)}{D^{g}(M/F)} (1-\phi(g)) \, dg + O(m^{-\infty}) \,, \end{split}$$

will contribute to the residue term of the Main result.

- Assume 0 singular value of $\mu : M \to \mathfrak{g}^*$.
- Then $RR^{G}(M, L^{m})$ splits into two terms as before.
- Writing $F:=M^{\mathcal{G}}\cap \mu^{-1}(0)$, the term

$$\begin{split} \int_{G} \int_{M^{G}} \mathrm{Tr}[g^{-1}|_{L^{m}}] \frac{e^{m\omega} \operatorname{Td}(M^{G})}{D^{g}(M/M^{G})} (1-\phi(g)) \, dg \\ &= \int_{G} \int_{F} \mathrm{Tr}[g^{-1}|_{L^{m}}] \frac{e^{m\omega} \operatorname{Td}(F)}{D^{g}(M/F)} (1-\phi(g)) \, dg + O(m^{-\infty}) \,, \end{split}$$

will contribute to the residue term of the Main result.

• Delarue-I.-Ramacher,'23 : Compute the asymptotics as $m \rightarrow +\infty$ of

$$\begin{split} \int_{\mathfrak{g}} \int_{M} e^{2i\pi m \langle \mu, X \rangle} e^{m\omega} \operatorname{Td}_{\mathfrak{g}}(M, X) \phi(e^{X}) \, dX \\ &= \int_{\mathfrak{g}} \int_{U} e^{2i\pi m \langle \mu, X \rangle} e^{m\omega} \operatorname{Td}_{\mathfrak{g}}(M, X) \phi(e^{X}) \, dX + O(m^{-\infty}) \,, \end{split}$$

using explicit local coordinates for $U \subset M$ around F.

• To simplify : F reduced to one point. We use the coordinates

$$\begin{split} \Psi: S^+ \times S^- \times]0, \varepsilon[\times \mathbb{R} \to U \subset \mathbb{C}^n \\ (w^+, w^-, r, q) \mapsto \left(\sqrt{\sqrt{r^4 + q^2} + q} \ w^+, \sqrt{\sqrt{r^4 + q^2} - q} \ w^-\right) \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• To simplify : F reduced to one point. We use the coordinates

$$\begin{split} \Psi: S^+ \times S^- \times]0, \varepsilon[\times \mathbb{R} \to U \subset \mathbb{C}^n \\ (w^+, w^-, r, q) \mapsto \left(\sqrt{\sqrt{r^4 + q^2} + q} \; w^+, \sqrt{\sqrt{r^4 + q^2} - q} \; w^-\right) \end{split}$$

In these coordinates, the symplectic form becomes

$$\omega = \omega|_{\mu^{-1}(0)} + d(q\theta + (\sqrt{r^4 + q^2} - r^2)\overline{\theta}),$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

where $\theta := \frac{1}{2}(\theta^+ + \theta^-)$ connection and $\overline{\theta} := \frac{1}{2}(\theta^+ - \theta^-)$ basic.

• To simplify : F reduced to one point. We use the coordinates

$$\begin{split} \Psi: S^+ \times S^- \times]0, \varepsilon[\times \mathbb{R} \to U \subset \mathbb{C}^n \\ (w^+, w^-, r, q) \mapsto \left(\sqrt{\sqrt{r^4 + q^2} + q} \; w^+, \sqrt{\sqrt{r^4 + q^2} - q} \; w^-\right) \end{split}$$

In these coordinates, the symplectic form becomes

$$\omega = \omega|_{\mu^{-1}(0)} + d(q\theta + (\sqrt{r^4 + q^2} - r^2)\overline{\theta}),$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

where $\theta := \frac{1}{2}(\theta^+ + \theta^-)$ connection and $\overline{\theta} := \frac{1}{2}(\theta^+ - \theta^-)$ basic.

 The integral picks up a boundary term on S⁺ × S⁻ × {0} due to Stokes, leading to the two last terms of the Main result.

• To simplify : F reduced to one point. We use the coordinates

$$\begin{split} \Psi: S^+ \times S^- \times]0, \varepsilon[\times \mathbb{R} \to U \subset \mathbb{C}^n \\ (w^+, w^-, r, q) \mapsto \left(\sqrt{\sqrt{r^4 + q^2} + q} \; w^+, \sqrt{\sqrt{r^4 + q^2} - q} \; w^-\right) \end{split}$$

In these coordinates, the symplectic form becomes

$$\omega = \omega|_{\mu^{-1}(0)} + d(q\theta + (\sqrt{r^4 + q^2} - r^2)\overline{\theta}),$$

where $\theta := \frac{1}{2}(\theta^+ + \theta^-)$ connection and $\overline{\theta} := \frac{1}{2}(\theta^+ - \theta^-)$ basic.

- The integral picks up a boundary term on $S^+ \times S^- \times \{0\}$ due to Stokes, leading to the two last terms of the Main result.
- As $\sqrt{r^4 + q^2} r^2 \xrightarrow{r \to 0} |q|$, the amplitudes of oscillating integrals contain a factor of |q|, leading to **Cauchy principal values**.

• We get an explicit formula of the form

$$\begin{split} \int_{\mathfrak{g}} \int_{U} e^{2i\pi m \langle \mu, X \rangle} e^{m\omega} \operatorname{Td}_{\mathfrak{g}}(M, X) \phi(e^{X}) \, dX \\ &= \langle \delta \operatorname{-term}, \phi \rangle + \langle \mathsf{p.v.-term}, \phi \rangle + O(m^{-\infty}) \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

and the second term is **non-local** in ϕ .

• We get an explicit formula of the form

$$\begin{split} \int_{\mathfrak{g}} \int_{U} e^{2i\pi m \langle \mu, X \rangle} e^{m\omega} \operatorname{Td}_{\mathfrak{g}}(M, X) \phi(e^{X}) \, dX \\ &= \langle \delta \operatorname{-term}, \phi \rangle + \langle \mathsf{p.v.-term}, \phi \rangle + O(m^{-\infty}) \end{split}$$

and the second term is **non-local** in ϕ .

• In particular, if $e \notin \operatorname{Supp} \phi$, then

$$\begin{split} \int_{G} \int_{F} \mathrm{Tr}[g^{-1}|_{L^{m}}] \frac{e^{m\omega} \operatorname{Td}(F)}{D^{g}(M/F)} \phi(g) \, dg &= \int_{G} \chi^{(m)}(g) \phi(g) dg + O(m^{-\infty}) \\ &= \langle \mathrm{p.v.-term}, \phi \rangle + O(m^{-\infty}) \,, \end{split}$$

thus identifying the residue term.

• We get an explicit formula of the form

$$\begin{split} \int_{\mathfrak{g}} \int_{U} e^{2i\pi m \langle \mu, X \rangle} e^{m\omega} \operatorname{Td}_{\mathfrak{g}}(M, X) \phi(e^{X}) \, dX \\ &= \langle \delta \operatorname{-term}, \phi \rangle + \langle \mathsf{p.v.-term}, \phi \rangle + O(m^{-\infty}) \end{split}$$

and the second term is **non-local** in ϕ .

• In particular, if $e \notin \operatorname{Supp} \phi$, then

$$\begin{split} \int_{G} \int_{F} \mathrm{Tr}[g^{-1}|_{L^{m}}] \frac{e^{m\omega} \operatorname{Td}(F)}{D^{g}(M/F)} \phi(g) \, dg &= \int_{G} \chi^{(m)}(g) \phi(g) dg + O(m^{-\infty}) \\ &= \langle \mathrm{p.v.-term}, \phi \rangle + O(m^{-\infty}) \,, \end{split}$$

▲口> ▲圖> ▲理> ▲理> 三理 ---

thus identifying the residue term.

• To conclude, we use Meinrenken, '96 on the polynomial behavior of $RR^{G}(M, L^{m})$ in $m \in \mathbb{N}$, compared to our polynomial formula

Thank you!

