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Quantization commutes with Reduction
pM, ωq compact symplectic manifold, dim M “ 2n.

pL, hLq Hermitian line bundle over M with Hermitian connection ∇L

satisfying the prequantization condition

ω “
i

2πRL ,

where RL P Ω2pM,Cq curvature of ∇L.
G compact Lie group acting on pL, hL,∇Lq over pM, ωq, g :“ LiepGq.
Then the action of G on pM, ωq is Hamiltonian : there is a
G-equivariant µ : M Ñ g˚, called moment map, satisfying

d⟨µ,X ⟩ “ ι
rXω .

for all X P g inducing rX P C8pM,TMq.
µ : M Ñ g˚ is defined by the Kostant formula

⟨µ,X ⟩ :“ i
2π p∇

rX ´ LX q .
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Quantization commutes with Reduction

Assume pM, ωq admits a G-invariant compatible complex structure.

Then G acts holomorphically on pM, ωq compact Kähler manifold.
pL, hLq admits a unique holomorphic structure for which ∇L is the
Chern connection, and G acts holomorphically on L over M.

Classical mechanics Quantum mechanics
classical phase space :

space of quantum states :

pM, ωq symplectic manifold

H0pM, Lq holomorphic sections of L

classical symmetries :

quantum symmetries :

Hamiltonian action of G on pM, ωq

Unitary action of G on H0pX , Lq

classical reduction :

quantum reduction :

M0 :“ µ´1p0q{G

H0pM, LqG G-invariant hol. sections
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Quantization commutes with Reduction

Assume 0 regular value of µ : M Ñ g˚ and G acts freely on µ´1p0q.

Definition (Marsden-Weinstein)
The symplectic reduction is the smooth manifold M0 :“ µ´1p0q{G
endowed with the unique symplectic form ω0 satisfying

π˚
0ω0 “ ω|µ´1p0q ,

where π0 : µ´1p0q Ñ M0 quotient map.

pM0, ω0q is prequantized by the line bundle L0 caracterized by

C8pM0, L0q » C8pµ´1p0q, L|µ´1p0qq
G ,

with induced Hermitian metric and connection.
If pM, ωq admits a G-invariant compatible complex structure, then
L0 holomorphic line bundle over pM0, ω0q Kähler.
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Quantization commutes with Reduction

Theorem ([Q,R]=0, Guillemin-Sternberg,’82)
Let G be a compact Lie group acting holomorphically on a holomorphic
Hermitian line bundle pL, hLq prequantizing a compact Kähler manifold
pM, ωq, and assume that G acts freely on µ´1p0q. Then the natural map

H0pM, LqG ÝÑ H0pM0, L0q

s ÞÝÑ s|µ´1p0q ,

is an isomorphism.

Teleman, Braverman, Zhang,’00 : For all j ą 0,

dim H jpM, LqG “ dim H jpM0, L0q ,

where H jpM, Lq is the j-th Dolbeault cohomology group of L.
Setting RRGpM, Lq :“

řn
j“0p´1qj dim H jpM, LqG , this implies

RRGpM, Lq “ RRpM0, L0q .
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Quantization commutes with Reduction

This last statement extends to the symplectic case :

RRGpM, Lq “ dimpKerD`
L qG ´ dimpCokerD`

L qG ,

where D`
L : Ω0,`pM, Lq Ñ Ω0,´pM, Lq spinc Dirac operator induced by a

G-invariant almost complex structure J P EndpTMq compatible with ω.

Theorem ([Q,R]=0 in the symplectic case)
Assume that 0 is a regular value of µ. Then

RRGpM, Lq “ RRpM0, L0q .

By the Hirzebruch-Riemann-Roch formula (HRR), this implies

RRGpM, Lq “

ż

M0

eω0 TdpM0q ,

where rTdpM0qs P HpM0,Rq symplectic invariant.
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Quantization commutes with Reduction

[Q,R]=0 in the symplectic case : a short history
For G torus : Vergne,’96, Meinrenken,’96.

For general G : Meinrenken,’98, then Tian-Zhang,’98.
For 0 singular value of µ : Meinrenken-Sjamaar,’99, then Zhang,’99,
Paradan,’99.
For BM ‰ 0 : Tian-Zhang,’99.
For M non-compact and µ proper : Paradan,’03 (for coadjoint orbits),
general case conjectured in Vergne’s ICM 2006 plenary talk, solved by
Ma-Zhang,’14, then Paradan,’11.
For CR-manifolds : Hsiao-Ma-Marinescu,’19.
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For 0 singular value of µ, the results of Meinrenken-Sjamaar, Zhang
and Paradan establish

RRGpM, Lq “ RRp rMε,rLεq ,

for various desingularizations p rMε, rωεq of pM0, ω0q, depending on the
choice of ε ą 0.

In particular, this gives

RRGpM, Lq “

ż

rMε

erωε Tdp rMεq .

Question (Sjamaar,’95)
Can the right-hand side be expressed purely in terms of symplectic
invariants of M0 as a stratified symplectic space ?
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Theorem (Delarue-I.-Ramacher,’23)
Explicit Riemann-Roch type formula for RRGpM, Lq when G “ S1 and 0
singular value of µ, expressed purely in terms of symplectic invariants of
M0 as a stratified symplectic space.
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Description of the Main result
M smooth manifold endowed with an action of G “ S1.

Spg˚q :“ tentire analytic series on g :“ Lie Gu.

Definition (Cartan)
The equivariant cohomology HGpM,Cq :“ HpΩGpMq, dgq of G acting
on M is the cohomology of

ΩGpMq :“ ΩpM,CqG b Spg˚q ,

endowed with the differential

pdgαqpX q :“ dαpX q ` 2iπ ι
rXαpX q .

for all α P ΩGpMq and X P g inducing rX P C8pM,TMq.

Proposition
If G acts freely M, then HGpMq » HpM{Gq.
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Description of the Main result
Consider now the Hamiltonian action of G “ S1 on pM, ωq, with moment
map µ : M Ñ g˚.

Definition
For G acting freely on µ´1p0q, the Kirwan map κ : HGpMq Ñ HpM0,Cq

is given by

κ : HGpMq
inc˚

ÝÝÑ HGpµ´1p0q,Cq » HpM0,Cq .

Proposition
The Kirwan map is characterized for all α P ΩGpMq and β P ΩpM0,Cq by

ż

M0

β ^ κpαq “

ż

µ´1p0q

π˚
0β ^ α

` i
2πdθ

˘

^ θ ,

where θ P Ω1pµ´1p0q,Rq is a connection over the S1-principal bundle
π0 : µ´1p0q

S1
ÝÑ M0, so that θprX q “ x for all X P g identified with x P R.
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Definition (Berline-Vergne)
E complex vector bundle over M with G-invariant Hermitian connection
∇E , the equivariant curvature is

RE
g :“ RE ` 2iπ µE P Ω‚pM,EndpE qqG b Spg˚q ,

where µE pX q :“ LX ´ ∇E
rX for all X P g inducing rX P C8pM,TMq.

Let E “ pTM, Jq be equipped with the Chern connection ∇TM .

Proposition (Chern-Weil theory, Berline-Vergne)
The equivariant forms c1,gpLq :“ ω ` 2iπ µ P ΩGpMq and

TdgpMq :“ det
˜

RTM
g {2iπ

exp RTM
g {2iπ ´ Id

¸

P ΩGpMq

are dg-closed and their classes in HGpMq are independent of J P EndpTMq.
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Description of the Main result

For all g P G , set χpgq :“ Trrg |Ker D`
L

s ´ Trrg |Coker D`
L

s.

Then RRpM, Lq “ χpeq, and

RRGpM, Lq “

ż

G
χpgq dg .

Theorem (equivariant index formula, Atiyah-Bott-Segal-Singer,’68)
For all g P G , writing Mg :“ tx P M | g .x “ xu, we have

χpgq “

ż

Mg
Trrg´1|Ls

eω TdpMg q

Dg pM{Mg q
,

where Dg pM{Mg q “ detNg pId ´ g exppRNg
qq P Ω‚pM,Cq with

Ng :“ TM{TMg normal bundle of Mg Ă M.

For g “ eX with X P g, we get Trrg´1|Ls “ e2iπ⟨µ,X⟩.
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Description of the Main result

Theorem (Kirillov formula, Berline-Vergne,’82)
For all X P g small enough, we have

χpeX q “

ż

M
e2iπ⟨µ,X⟩eω TdgpM,X q .

Theorem (Meinrenken,’96)
If G “ S1 acts freely on µ´1p0q, then

RRGpM, Lq “

ż

M0

eω0κpTdgpMqq “ RRpM0, L0q .

Theorem (Duistermaat-Guillemin-Meinrenken-Wu,’96)
If 0 is a minimum/maximum of the moment map, then

RRGpM, Lq “ Resz“0{8

ş

M0
z´1eω0 TdpM0q

DzpM0{Mq
“ RRpM0, L0q .
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Description of the Main result

Assume 0 singular value of µ : M Ñ g˚, not extremal.

To simplify : F :“ µ´1p0q X MG is reduced to one point.

Proposition (local normal form, Guillemin-Sternberg,’84)
There exists a chart U Ă Cn around F Ă M such that for all v P U,

⟨µpvq,X ⟩ “ x
ÿ

kPZ
k |πkpvq|2

for all X P g sent to x P R via G » R{Z, and where for any k P Z,

πk : Cn Ñ tv P Cn | eX .v “ e2iπkxvu .

In particular,

pµ´1p0q X UqzF » S` ˆ S´ˆs0, εr ,

where S˘ ellipsoids inside the subspaces of ˘ weights inside Cn.
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Description of the Main result

Theorem (Delarue-I.-Ramacher,’23)
Assume 0 singular value of µ and G acts on µ´1p0qzF freely. Then

RRGpM, Lq “

ż

M0

eω0κpTdgpMqq `

ż

Exc
eπ˚ωκExcpTdgpMqq

` Resz“0,8

ş

F z´1eω TdpF q

DzpM{F q
.

F Ă µ´1p0q fixed point set of G inside µ´1p0q.
κ : ΩGpMq Ñ ΩpM0,Rq defined using a connection
θ P Ω1pµ´1p0q,Rq with normal form around the singularities.
Under a natural condition on the weights of the S1-action around F ,
κ : HGpMq Ñ Hp rM0,Cq with π : rM0 Ñ M0 partial resolution of the
singularities.
Resz“0,8 is the average of the residues at 0 and 8.



Description of the Main result

Theorem (Delarue-I.-Ramacher,’23)
Assume 0 singular value of µ and G acts on µ´1p0qzF freely. Then

RRGpM, Lq “

ż

M0

eω0κpTdgpMqq `

ż

Exc
eπ˚ωκExcpTdgpMqq

` Resz“0,8

ş

F z´1eω TdpF q

DzpM{F q
.

F Ă µ´1p0q fixed point set of G inside µ´1p0q.

κ : ΩGpMq Ñ ΩpM0,Rq defined using a connection
θ P Ω1pµ´1p0q,Rq with normal form around the singularities.
Under a natural condition on the weights of the S1-action around F ,
κ : HGpMq Ñ Hp rM0,Cq with π : rM0 Ñ M0 partial resolution of the
singularities.
Resz“0,8 is the average of the residues at 0 and 8.



Description of the Main result

Theorem (Delarue-I.-Ramacher,’23)
Assume 0 singular value of µ and G acts on µ´1p0qzF freely. Then

RRGpM, Lq “

ż

M0

eω0κpTdgpMqq `

ż

Exc
eπ˚ωκExcpTdgpMqq

` Resz“0,8

ş

F z´1eω TdpF q

DzpM{F q
.

F Ă µ´1p0q fixed point set of G inside µ´1p0q.
κ : ΩGpMq Ñ ΩpM0,Rq defined using a connection
θ P Ω1pµ´1p0q,Rq with normal form around the singularities.

Under a natural condition on the weights of the S1-action around F ,
κ : HGpMq Ñ Hp rM0,Cq with π : rM0 Ñ M0 partial resolution of the
singularities.
Resz“0,8 is the average of the residues at 0 and 8.



Description of the Main result

Theorem (Delarue-I.-Ramacher,’23)
Assume 0 singular value of µ and G acts on µ´1p0qzF freely. Then

RRGpM, Lq “

ż

M0

eω0κpTdgpMqq `

ż

Exc
eπ˚ωκExcpTdgpMqq

` Resz“0,8

ş

F z´1eω TdpF q

DzpM{F q
.

F Ă µ´1p0q fixed point set of G inside µ´1p0q.
κ : ΩGpMq Ñ ΩpM0,Rq defined using a connection
θ P Ω1pµ´1p0q,Rq with normal form around the singularities.
Under a natural condition on the weights of the S1-action around F ,
κ : HGpMq Ñ Hp rM0,Cq with π : rM0 Ñ M0 partial resolution of the
singularities.

Resz“0,8 is the average of the residues at 0 and 8.



Description of the Main result

Theorem (Delarue-I.-Ramacher,’23)
Assume 0 singular value of µ and G acts on µ´1p0qzF freely. Then

RRGpM, Lq “

ż

M0

eω0κpTdgpMqq `

ż

Exc
eπ˚ωκExcpTdgpMqq

` Resz“0,8

ş

F z´1eω TdpF q

DzpM{F q
.

F Ă µ´1p0q fixed point set of G inside µ´1p0q.
κ : ΩGpMq Ñ ΩpM0,Rq defined using a connection
θ P Ω1pµ´1p0q,Rq with normal form around the singularities.
Under a natural condition on the weights of the S1-action around F ,
κ : HGpMq Ñ Hp rM0,Cq with π : rM0 Ñ M0 partial resolution of the
singularities.
Resz“0,8 is the average of the residues at 0 and 8.



Description of the Main result

Theorem (Delarue-I.-Ramacher,’23)
Assume 0 singular value of µ and no orbifold points. Then

RRGpM, Lq “

ż

M0

eω0κpTdgpMqq `

ż

Exc
eπ˚ωκExcpTdgpMqq

` Resz“0,8

ş

F z´1eωTdpF q

DzpM{F q
.

The exceptional divisor π|Exc : Exc Ñ F of the resolution is an
S`{S1 ˆ S´{S1-principal bundle.

κExc : HGpMq Ñ HpExc,Cq is defined for all α P ΩGpMq by

κExcpαq “

1
2pαp i

2πdθ`q ` αp i
2πdθ´qq ´ αp i

2π
dθ``dθ´

2 q

dθ` ´ dθ´

where θ˘ P ΩpS˘,Rq connections for the S1-actions on S˘.



Description of the Main result

Theorem (Delarue-I.-Ramacher,’23)
Assume 0 singular value of µ and no orbifold points. Then

RRGpM, Lq “

ż

M0

eω0κpTdgpMqq `

ż

Exc
eπ˚ωκExcpTdgpMqq

` Resz“0,8

ş

F z´1eωTdpF q

DzpM{F q
.

The exceptional divisor π|Exc : Exc Ñ F of the resolution is an
S`{S1 ˆ S´{S1-principal bundle.
κExc : HGpMq Ñ HpExc,Cq is defined for all α P ΩGpMq by

κExcpαq “

1
2pαp i

2πdθ`q ` αp i
2πdθ´qq ´ αp i

2π
dθ``dθ´

2 q

dθ` ´ dθ´

where θ˘ P ΩpS˘,Rq connections for the S1-actions on S˘.



Elements of proof

1 Quantization commutes with Reduction

2 Description of the Main result

3 Elements of proof



Elements of proof

Follows Witten,’92 and Meinrenken,’96.

Introduce a quantum number m P N with m „ 1{ℏ, so that
Lm :“ Lbm prequantizes pM,mωq with moment map mµ : M Ñ g˚.
Let ϕ P C8

c pS1q with compact support around e P G .
To simplify : G “ S1 acts freely on MzMG .

RRGpM, Lmq “

ż

G
χpmqpgq dg

“

ż

G
χpmqpgqϕpgq dg `

ż

G
χpmqpgqp1 ´ ϕpgqq dg

“

ż

g

ż

M
e2iπm⟨µ,X⟩emω TdgpM,X qϕpeX q dX

`

ż

G

ż

MG
Trrg´1|Lms

emω TdpMGq

Dg pM{MGq
p1 ´ ϕpgqq dg .

by the Kirillov and equivariant index formulas.
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Elements of proof
Assume G acts freely on µ´1p0q.

Non-stationary phase lemma : for all ϕ P C8
c pRq and ψ P C8pRq

satisfying ψ1 ą 0, we have as m Ñ `8,
ż

R
eimψptq ϕptq dt “ Opm´8q .

For g “ eX , we have Trrg´1|Lms “ e2iπ⟨µ,X⟩, so that
ż

G

ż

MG
Trrg´1|Lms

emω TdpMGq

Dg pM{MGq
p1 ´ ϕpgqq dg “ Opm´8q .

For any neighborhood U Ă M of µ´1p0q, we have
ż

g

ż

M
e2iπm⟨µ,X⟩emω TdgpM,X qϕpeX q dX

“

ż

g

ż

U
e2iπm⟨µ,X⟩emω TdgpM,X qϕpeX q dX ` Opm´8q .
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Duistermaat-Heckman,’82 : For U “ µ´1pIq with 0 P I Ă R small
enough, there is a connection θ P Ω1pµ´1p0q,Rq such that, in a
trivialization U » µ´1p0q ˆ I with q P I, we have

ω “ ω|µ´1p0q ` dpqθq .
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M
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stationary phase lemma : for all ψ, ρ P C8

c pRq,
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ż
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`8
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c pRq with ϕ ” 1 around 0, we get as m Ñ `8,

RRGpM, Lmq
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0 q ` Opm´8q , since κpTdgpMqq “ TdpM0q .
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Elements of proof

Recall RRpM0, Lm
0 q polynomial in m P N by HRR.

Theorem (Meinrenken,’96)
There exists k P N such that for all 0 ď j ď k ´ 1, the functions
m ÞÑ RRpM, Lkm´jq are polynomials in m P N.

Uses the equivariant index formula for χpmq and a result of Erhart,’77
on the polynomiality of the number of integer points inside polytopes.
Then RRGpM, Lmq “ RRpM0, Lm

0 q ` Opm´8q implies
RRGpM, Lmq “ RRpM0, Lm

0 q for all m P N, and setting m “ 1, we get

RRGpM, Lq “ RRpM0, L0q .

■
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Elements of proof
Assume 0 singular value of µ : M Ñ g˚.

Then RRGpM, Lmq splits into two terms as before.
Writing F :“ MG X µ´1p0q, the term

ż

G

ż

MG
Trrg´1|Lms

emω TdpMGq

Dg pM{MGq
p1 ´ ϕpgqq dg

“

ż

G

ż

F
Trrg´1|Lms

emω TdpF q

Dg pM{F q
p1 ´ ϕpgqq dg ` Opm´8q ,

will contribute to the residue term of the Main result.
Delarue-I.-Ramacher,’23 : Compute the asymptotics as m Ñ `8 of

ż

g

ż

M
e2iπm⟨µ,X⟩emω TdgpM,X qϕpeX q dX

“

ż

g

ż

U
e2iπm⟨µ,X⟩emω TdgpM,X qϕpeX q dX ` Opm´8q ,

using explicit local coordinates for U Ă M around F .
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Elements of proof

To simplify : F reduced to one point. We use the coordinates

Ψ : S` ˆ S´ˆs0, εrˆR Ñ U Ă Cn

pw`,w´, r , qq ÞÑ

´

b

a

r4 ` q2 ` q w`,

b

a

r4 ` q2 ´ q w´
¯

.

In these coordinates, the symplectic form becomes

ω “ ω|µ´1p0q ` dpqθ ` p
a

r4 ` q2 ´ r2qθq ,

where θ :“ 1
2pθ` ` θ´q connection and θ :“ 1

2pθ` ´ θ´q basic.
The integral picks up a boundary term on S` ˆ S´ ˆ t0u due to
Stokes, leading to the two last terms of the Main result.
As

a

r4 ` q2 ´ r2 rÑ0
ÝÝÝÑ |q|, the amplitudes of oscillating integrals

contain a factor of |q|, leading to Cauchy principal values.
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Elements of proof

We get an explicit formula of the form
ż

g

ż

U
e2iπm⟨µ,X⟩emω TdgpM,X qϕpeX q dX

“ ⟨δ-term, ϕ⟩ ` ⟨p.v.-term, ϕ⟩ ` Opm´8q

and the second term is non-local in ϕ.

In particular, if e R Suppϕ, then
ż

G

ż

F
Trrg´1|Lms

emω TdpF q

Dg pM{F q
ϕpgq dg “

ż

G
χpmqpgqϕpgqdg ` Opm´8q

“ ⟨p.v.-term, ϕ⟩ ` Opm´8q ,

thus identifying the residue term.
To conclude, we use Meinrenken,’96 on the polynomial behavior of
RRGpM, Lmq in m P N, compared to our polynomial formula ■
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The End

Thank you !


